Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – IDIOM Decision Manager
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > First Look – IDIOM Decision Manager
Business IntelligenceCRMData MiningPredictive Analytics

First Look – IDIOM Decision Manager

JamesTaylor
JamesTaylor
11 Min Read
SHARE

I got an update from the folks at IDIOM recently. The founders say they got started with data modeling in the early 80s and realized this could not deliver model-driven development because the whole process thing did not work. By the 90s they had found an approach that worked as a model-driven approach but the JVM/Internet/XML storm knocked a lot of vendor-specific model-driven approaches out. Idiom grew from this experience – model-driven for sure but without the need to bet the bank on a vendor-specific approach. Idiom has a focus on decision automation with a strong data element. They got a couple of early insurance customers including New Zealand’s largest insurer (they are NZ based)  and Allianz in Australia, and have been growing ever since. Their focus in the last few years has been on OEM relationships – software companies who are building decision-centric applications. This is a somewhat slow but very viable approach. Next up is going to be some focus around delivering model generated source code through SaaS

They find, as I do, that doing the decisioning first can bound and constrain (in a good way) the rest of the application. The feedback from their implementers …


More Read

Here’s How Focusing on Decisions Aligns Analytics and Business
TechAmerica and Big Data in the Public Sector
Predictive Analytics Makes DasCoin And Other Currencies Mainstream
R for psychological research
Consolidation in the Social Business Market Continues: Salesforce.com Acquires Radian6

I got an update from the folks at IDIOM recently. The founders say they got started with data modeling in the early 80s and realized this could not deliver model-driven development because the whole process thing did not work. By the 90s they had found an approach that worked as a model-driven approach but the JVM/Internet/XML storm knocked a lot of vendor-specific model-driven approaches out. Idiom grew from this experience – model-driven for sure but without the need to bet the bank on a vendor-specific approach. Idiom has a focus on decision automation with a strong data element. They got a couple of early insurance customers including New Zealand’s largest insurer (they are NZ based)  and Allianz in Australia, and have been growing ever since. Their focus in the last few years has been on OEM relationships – software companies who are building decision-centric applications. This is a somewhat slow but very viable approach. Next up is going to be some focus around delivering model generated source code through SaaS

They find, as I do, that doing the decisioning first can bound and constrain (in a good way) the rest of the application. The feedback from their implementers and partners is that you can and should do the decisioning definition first both because it drives the rest of the application and because it lasts longer than the rest of the system.

IDIOM’s product supports both Java and .Net and is a really pure Decision Service implementation – XML structures are passed to the decision server which executes decision models and returns the updated XML. A classic stateless decision service where the knowledge embedded in the decision service is your core IP. Their implementation is always stateless and can be wrapped so it can be accessed using SOA, queue services, as a DLL, from workflow engines, enterprise service buses etc. IDIOM generates and delivers to the user source code (Java, C# and compact framework) so users can also include the compiled code in the address space of the calling application if they need to.

While some decision services execute only against the data passed in, the IDIOM decision service can call out to grab additional data when a decision requires it. This was added recently – IDIOM has always had a concept of Tables which are internal and could be loaded at run time and now there is a connector for these Tables so they can be linked to a live database. They try to stay very agnostic with respect to linking the decision service to the execution environment – a philosophical approach I strongly support – but it is pretty limiting for decision services if they can’t go retrieve additional data. Even though this represents a coupling to the execution environment they reluctantly added this.

The product stores all its definitions in a repository, typically one for an enterprise or Line of Business. One of their largest rule bases is NTI – a niche insurer in Australia who took decisioning very seriously right at the start. NTI has a team drawn from business groups that own the rules and that worked in parallel with a technical development team on a 100 person year project. This repository manages some thousands of decisions across the entire business and generates ~1.8millions lines of Java code as 50 distinct decision models.

An executable or a Decision Model is typically something like the entire underwriting decision – do I have enough data, is it valid, interim calculations, do I accept the risk, at what price and with what terms and conditions, and what needs to happen next. The decision models process schemas as fact models. The tool renders the schema (w3c) as a tree and cuts it down to just the stuff that makes sense for building decisions. Generally the schema contains both the supplied data and the outbound decision results etc. Delegation of control to the decision designer is managed by making only some of the elements of the schema available for manipulation by the Decision Service (these are the values that can be set by the decisions), and the schemas also get annotated with the decisions that can then be defined. In IDIOM’s view the schema is a description of the problem domain at rest while the decision model is a description of how it changes between the resting states.

Decision Model – contains atomic decisions and collections of decisions and is represented as a tree. Can break down a decision into elements – defining how the decision that is required breaks down into its component decision elements. Decisions are linked to the element of the schema that will be updated by the decision. This decomposition defines the execution sequence – there is no support for inferencing. “Below” the decision model there are formulae. Each formula is a sophisticated expression and a very nice expression builder is provided. Hundreds of validation tests are applied at deployment time as the code is generated.

The product generates source code for deployment (so there is no licensed server as such) and supports live re-deployment and updates as a good decisioning platform should. IDIOM regards testing as critically important and makes it part of the analysis/design process – a good designer tests their own decision design. Iterative, step by step testing in the builder is supported, as well as regression testing both in the builder, and through testing harnesses that wrap the run-time. The tool supports logging of the runtime execution of decisions (creating before and after images of the schema documents for instance) so users can manage regression testing and testing for expected values on future deployments.

The tool supports versioning of all elements with effective dating at the decision, formula, and table data levels. It also has a nice PDF generator that documents all or part of the repository in a structured ‘logical english’ format suitable for a business audience.. A future version will allow users to plug-in external function libraries for use in expressions/decision models.

IDIOM also have a forms builder that allows decision models to manipulate the UI, underlying behavior and the forms themselves. Forms are built by mapping the schema to a session schema and then to a form that uses a CSS to control look and feel. For each field or form section the user can execute a set of UI rules against the session schema – the same approach as executing rules against the main schema but with access to specific meta data elements related to the UI. Both the underlying business and the session rules are run when you link an element to decision models. This approach allows users to build ‘reflexive questioning’ for real time, inline response. The user can use the decision models to define messages, change the layout, add and remove fields etc.

IDIOM is not a “classic” rules management system and has some unique features. At its heart it allows you to build Decision Services, however, and that’s what matters.


Link to original post

TAGGED:decision managementstartups
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

More Than Pretty Pictures: Visualizing Insight

4 Min Read
machine learning helping entrepreneurs
ExclusiveITMachine Learning

Could Machine Learning Help Startups Beat the Odds?

8 Min Read

Beat the Clock with Decision Management

5 Min Read

Adding decision management to your BPM initiative

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?