By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Decision engines in financial services
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Decision engines in financial services
Business IntelligencePredictive Analytics

Decision engines in financial services

JamesTaylor
Last updated: 2010/04/26 at 4:53 PM
JamesTaylor
6 Min Read
SHARE

The use of technology to automate and manage decisions, especially high volume decisions essential to day-to-day operational execution, is expanding rapidly. Beginning with the consumer credit business, use of decision engines and decision management has spread to all aspects of financial services and increasingly beyond. The primary drivers for this expansion are threefold–the increasing capability of decision engines, the increasing importance of analytics to businesses and the recognition of customer centricity as a core competence.

Decision engines have become increasingly capable over the last few years. Not only are vertically specialized decision engines more numerous and better established, general purpose platforms suitable for building decision engines are taking great strides. Business rules management systems have matured and improved. The ease with which large numbers of rules can be managed and governed, the extent to which rules can be safely exposed to non-technical users to edit, the simulation of the business impact of a rule change and the integration with business analytics for risk or opportunity modeling have all seen dramatic improvement …

This is a piece I wrote for Chris Pratt’s quarterly financial institutions newsletter

More Read

database compliance guide

Four Strategies For Effective Database Compliance

5 Big Data Storage Solutions
How To Keep Your Data Security Knowledge Up To Date?
Crucial Advantages of Investing in Big Data Management Solutions
Big Data Strategies Hinge on Using Drop Tables in SQL Servers

The use of technology to automate and manage decisions, especially high volume decisions essential to day-to-day operational execution, is expanding rapidly. Beginning with the consumer credit business, use of decision engines and decision management has spread to all aspects of financial services and increasingly beyond. The primary drivers for this expansion are threefold–the increasing capability of decision engines, the increasing importance of analytics to businesses and the recognition of customer centricity as a core competence.

Decision engines have become increasingly capable over the last few years. Not only are vertically specialized decision engines more numerous and better established, general purpose platforms suitable for building decision engines are taking great strides. Business rules management systems have matured and improved. The ease with which large numbers of rules can be managed and governed, the extent to which rules can be safely exposed to non-technical users to edit, the simulation of the business impact of a rule change and the integration with business analytics for risk or opportunity modeling have all seen dramatic improvement across multiple vendors. Several purpose-built decisioning platforms have gained market traction, offering built-in support for champion/challenger testing as well as analytic integration. Both kinds of platform have been specialized into vertical specific decision engines and both offer tremendous value “filling the gaps” between commercially available decision engines for originations, fraud etc. Institutions can now realistically manage all the operational decisions that matter across their lines of business – the technology is ready.

As these platforms improve and are more broadly adopted it is clear that one way in which they offer tremendous value is in the effective deployment and application of business analytics. We are seeing increasing investments in high-end business analytics (data mining, risk scoring, predictive analytics and so on). More and more organizations are making analytics central to their overall growth and profitability plans. The power of analytics to simplify data while amplifying its value and to turn uncertainty about the future into usable probabilities make analytics compelling to every aspect of how a company runs its business. When analytics must be applied to the front line, the deployment of those analytics becomes a critical success factor and decision engines have proven themselves again and again in this regard. With over 50% of models not making it into production and recent surveys still showing most companies spending 6-12 months deploying models, the use of decision engines to deploy analytics is rapidly gaining acceptance as the best way to address these challenges.

Finally decision engines are playing a central role in the move to customer centricity. When a company wants to make decisions about marketing offers, about pricing or about retention based on the value of the customer they face numerous challenges. Once the data from multiple channels and product lines is pulled together and analyzed, the need to push the resulting customer-centric analytic models and decisions out to every channel becomes critical. Once again decision engines, especially some of the newer decisioning platforms focused on customer treatment, make it easier to deploy, monitor and manage these customer-centric analytics.

Decision engines have been around a long time, handling complex yet high volume decisions. Increasing capability, a focus on analytics and the need to become customer centric make decision engine technology a must-have for companies of all sizes. Adopting decision management, getting serious about improving and automating operational decisions, is no longer optional.

Link to original post

TAGGED: analytics, data management, decision management
JamesTaylor April 26, 2010
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

database compliance guide
Data Management

Four Strategies For Effective Database Compliance

8 Min Read
Data Management

5 Big Data Storage Solutions

6 Min Read
keep data security up to date
Security

How To Keep Your Data Security Knowledge Up To Date?

5 Min Read
benefits of big data management solutions
Big Data

Crucial Advantages of Investing in Big Data Management Solutions

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?