Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Decision engines in financial services
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Decision engines in financial services
Business IntelligencePredictive Analytics

Decision engines in financial services

JamesTaylor
JamesTaylor
6 Min Read
SHARE

The use of technology to automate and manage decisions, especially high volume decisions essential to day-to-day operational execution, is expanding rapidly. Beginning with the consumer credit business, use of decision engines and decision management has spread to all aspects of financial services and increasingly beyond. The primary drivers for this expansion are threefold–the increasing capability of decision engines, the increasing importance of analytics to businesses and the recognition of customer centricity as a core competence.

Decision engines have become increasingly capable over the last few years. Not only are vertically specialized decision engines more numerous and better established, general purpose platforms suitable for building decision engines are taking great strides. Business rules management systems have matured and improved. The ease with which large numbers of rules can be managed and governed, the extent to which rules can be safely exposed to non-technical users to edit, the simulation of the business impact of a rule change and the integration with business analytics for risk or opportunity modeling have all seen dramatic improvement …

More Read

Information-Driven Business: How to Manage Data and Information for Maximum Advantage
Beyond the Bottomline: ERP Tools Are Meant for Ensuring Customer Satisfaction
Training IS a Best Practice – Not Just a Component
Business Analytics Error: Learn from Uber’s Mistake During the Sydney Terror Attack
Advocate of Analytics – Economist Paul A. Samuelson (1915-2009)

This is a piece I wrote for Chris Pratt’s quarterly financial institutions newsletter

The use of technology to automate and manage decisions, especially high volume decisions essential to day-to-day operational execution, is expanding rapidly. Beginning with the consumer credit business, use of decision engines and decision management has spread to all aspects of financial services and increasingly beyond. The primary drivers for this expansion are threefold–the increasing capability of decision engines, the increasing importance of analytics to businesses and the recognition of customer centricity as a core competence.

Decision engines have become increasingly capable over the last few years. Not only are vertically specialized decision engines more numerous and better established, general purpose platforms suitable for building decision engines are taking great strides. Business rules management systems have matured and improved. The ease with which large numbers of rules can be managed and governed, the extent to which rules can be safely exposed to non-technical users to edit, the simulation of the business impact of a rule change and the integration with business analytics for risk or opportunity modeling have all seen dramatic improvement across multiple vendors. Several purpose-built decisioning platforms have gained market traction, offering built-in support for champion/challenger testing as well as analytic integration. Both kinds of platform have been specialized into vertical specific decision engines and both offer tremendous value “filling the gaps” between commercially available decision engines for originations, fraud etc. Institutions can now realistically manage all the operational decisions that matter across their lines of business – the technology is ready.

As these platforms improve and are more broadly adopted it is clear that one way in which they offer tremendous value is in the effective deployment and application of business analytics. We are seeing increasing investments in high-end business analytics (data mining, risk scoring, predictive analytics and so on). More and more organizations are making analytics central to their overall growth and profitability plans. The power of analytics to simplify data while amplifying its value and to turn uncertainty about the future into usable probabilities make analytics compelling to every aspect of how a company runs its business. When analytics must be applied to the front line, the deployment of those analytics becomes a critical success factor and decision engines have proven themselves again and again in this regard. With over 50% of models not making it into production and recent surveys still showing most companies spending 6-12 months deploying models, the use of decision engines to deploy analytics is rapidly gaining acceptance as the best way to address these challenges.

Finally decision engines are playing a central role in the move to customer centricity. When a company wants to make decisions about marketing offers, about pricing or about retention based on the value of the customer they face numerous challenges. Once the data from multiple channels and product lines is pulled together and analyzed, the need to push the resulting customer-centric analytic models and decisions out to every channel becomes critical. Once again decision engines, especially some of the newer decisioning platforms focused on customer treatment, make it easier to deploy, monitor and manage these customer-centric analytics.

Decision engines have been around a long time, handling complex yet high volume decisions. Increasing capability, a focus on analytics and the need to become customer centric make decision engine technology a must-have for companies of all sizes. Adopting decision management, getting serious about improving and automating operational decisions, is no longer optional.

Link to original post

TAGGED:analyticsdata managementdecision management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Business Data
AnalyticsBusiness IntelligenceDecision Management

Are Major Optimization Opportunities Hiding in Your Business Data?

9 Min Read
benefits of big data management solutions
Big Data

Crucial Advantages of Investing in Big Data Management Solutions

8 Min Read
Big Data Research
Best PracticesBig Data

Why You Need A Methodology For Your Big Data Research

6 Min Read

Teradata Active Enterprise Update

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?