By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
    benefits of data analytics for financial industry
    Fascinating Changes Data Analytics Brings to Finance
    7 Min Read
    analyzing big data for its quality and value
    Use this Strategic Approach to Maximize Your Data’s Value
    6 Min Read
    data-driven seo for product pages
    6 Tips for Using Data Analytics for Product Page SEO
    11 Min Read
    big data analytics in business
    5 Ways to Utilize Data Analytics to Grow Your Business
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Here’s how to build on Business Analytics
Share
Notification Show More
Latest News
cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
construction analytics
5 Benefits of Analytics to Manage Commercial Construction
Analytics
database compliance guide
Four Strategies For Effective Database Compliance
Data Management
Digital Security From Weaponized AI
Fortifying Enterprise Digital Security Against Hackers Weaponizing AI
Security
DevOps on cloud
Optimizing Cost with DevOps on the Cloud
Cloud Computing Development Exclusive IT
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Here’s how to build on Business Analytics
Business IntelligenceCRMData MiningPredictive Analytics

Here’s how to build on Business Analytics

JamesTaylor
Last updated: 2009/03/01 at 6:28 AM
JamesTaylor
7 Min Read
SHARE
- Advertisement -

As I blogged earlier, at the SAS Global Forum this week some SAS speakers drew a distinction between Business Intelligence – BI – and Business Analytics. I worry that this is a distinction without a difference and that it fell short of what SAS can offer its customers. Neil Raden, on his blog, dismissed the difference as “all fluff” and suggested we use an old but very meaningful phrase “decision support”. Like Neil, I noticed that the word “decision” was conspicuously absent from the SAS framework. Neil wondered how “this framework leads to making better [decisions]” and this made me think – what could a company do to build on the SAS Business Analytics framework?

- Advertisement -

Decision support to decision automation

The first step would be to look at the analytics you are developing and ask the question “what decision is this assisting?” Understanding the decision-making of analytic users, those who see the reports or dashboards, would clarify what analytics you need to make further progress and make it obvious who was the true consumer of each analytic. Understanding, for instance, that the reason out of stock predictions are being added to a particular report is that the supply chain manager uses it to place replenishment orders w…

More Read

data cleansing tips for business analytics

How Data Cleansing Can Make or Break Your Business Analytics

Accessible Business Analytics Set to Be a Boon for Small Businesses
5 Vital Business Intelligence Tips All Companies Should Embrace
How can CIOs Build Business Value with Business Analytics?
Impressive Ways that AI Improves Business Analytics Insights

As I blogged earlier, at the SAS Global Forum this week some SAS speakers drew a distinction between Business Intelligence – BI – and Business Analytics. I worry that this is a distinction without a difference and that it fell short of what SAS can offer its customers. Neil Raden, on his blog, dismissed the difference as “all fluff” and suggested we use an old but very meaningful phrase “decision support”. Like Neil, I noticed that the word “decision” was conspicuously absent from the SAS framework. Neil wondered how “this framework leads to making better [decisions]” and this made me think – what could a company do to build on the SAS Business Analytics framework?

The first step would be to look at the analytics you are developing and ask the question “what decision is this assisting?” Understanding the decision-making of analytic users, those who see the reports or dashboards, would clarify what analytics you need to make further progress and make it obvious who was the true consumer of each analytic. Understanding, for instance, that the reason out of stock predictions are being added to a particular report is that the supply chain manager uses it to place replenishment orders would show that it this report is being used to decide if a particular product should be ordered this week or not. Knowing that this is the decision being supported – how your reports generate action – might show you that other formats, other analytics would also be helpful and would clarify the analytic sophistication of the consumers of the results.

- Advertisement -

Once you know what decisions are being supported you can ask yourself questions like:

  • are there rules or constraints that also impact these decisions?
  • how do the decision makers apply these rules – are they repeatable?
  • does the decision maker have more productive things to be doing with their time than reviewing these reports and making these decisions – would it be worth offloading the decision to a system?
  • if a system made this decision would it be made quicker (overnight rather than in the morning, for instance) and would that add any value?
  • would the company run more effectively or efficiently if someone else controlled the way this decision was made?
  • can I break up this decision into lots of micro-decisions and get more targeted, more personalized, more focused?

Decision support to decision automationThe answers to these kinds of questions help clarify where on the range of pure decision support to pure decision automation a given decision might fall.In our book, Smart (Enough) Systems, we use this graphic to explain how these range works.

Strategic low-volume, high individual value decisions tend to require decision support where an expert or knowledge worker needs interactive analytic tools. Tactical decisions tend to be higher volume and more standardized “business analytics” are called for. Decision automation, however, starts to add value because there are often repeatable steps or rules to follow also. Finally operational decisions, high volume decisions with low individual value, are those where reports and dashboards should be replaced with embedded analytic models coupled with business rules to implement policy and regulations, expertise and know-how. This decision automation may not deliver “the answer” – it may just restrict the allowed answers to a short list – but some or all of the decision making process is automated.

Using business analytics to deliver predictive reporting and predictive dashboards is a great way to build decision support systems but applying Decision Management so that analytics can also be applied when operational decisions call for decision automation will allow SAS customers to make every decision analytically based. Decision management puts predictive analytics to work whether decisions are made by machines or by busy people with too little time to read a report (such as most call center or retail staff, for instance) or by people with no particular skill at interpreting data.


Link to original post

- Advertisement -
TAGGED: business analytics, decision management
JamesTaylor March 1, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
- Advertisement -

Follow us on Facebook

Latest News

cloud-centric companies using network relocation
Cloud-Centric Companies Discover Benefits & Pitfalls of Network Relocation
Cloud Computing
construction analytics
5 Benefits of Analytics to Manage Commercial Construction
Analytics
database compliance guide
Four Strategies For Effective Database Compliance
Data Management
Digital Security From Weaponized AI
Fortifying Enterprise Digital Security Against Hackers Weaponizing AI
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data cleansing tips for business analytics
AnalyticsBig DataExclusive

How Data Cleansing Can Make or Break Your Business Analytics

9 Min Read
accessible business analytics
AnalyticsBusiness IntelligenceExclusive

Accessible Business Analytics Set to Be a Boon for Small Businesses

7 Min Read
tips for making the most of business intelligence
Business IntelligenceExclusive

5 Vital Business Intelligence Tips All Companies Should Embrace

7 Min Read
AnalyticsBig DataBusiness IntelligencePredictive Analytics

How can CIOs Build Business Value with Business Analytics?

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?