Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: PAW Analyzing and predicting user satisfaction with sponsored search
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > PAW Analyzing and predicting user satisfaction with sponsored search
Predictive Analytics

PAW Analyzing and predicting user satisfaction with sponsored search

JamesTaylor
JamesTaylor
5 Min Read
SHARE

Live from Predictive Analytics World

Sugato Basu from Google presented on sponsored search (Ad Words) and how you can predict bounce rate, and thus user satisfaction, for a new ad. Ad Words, of course, are displayed when a search is made and tracking results involves tracking who clicks on the ads and whether they convert, explore the new site or just bounce.

Users want ads to be relevant to their queries or to the webpage content they are viewing. Search engines, meanwhile, want to show ads that users like and will click on. There is also a risk of over-advertising to users – if they have no commercial intent they don’t want to see ads for instance.

Bounce rate is another critical measure. If it is high then users are not satisfied with what they found – “they said yuk and went away”. The lower the bounce rate the better the ad/landing page. Evaluating it is tricky. Advertisers can evaluate bounce rate by seeing if visitors don’t do anything on the page though a user could call a number and show up as a false positive. Search engine companies can track subsequent behavior to see if it was quick enough to imply a bounce. But this can be difficult also as users could start queries in …

More Read

Interactive Brokers Collegiate Olympiad
Long Term Financial Planning with Financial Data Analytics
What’s Wrong with Today’s Planning and Budgeting
Decision Mangement is where CRM goes next
Watch the Replay: Putting Customer Value to Work – What Predictive Analytics Can Do for Your Bottom Line


Live from Predictive Analytics World

Sugato Basu from Google presented on sponsored search (Ad Words) and how you can predict bounce rate, and thus user satisfaction, for a new ad. Ad Words, of course, are displayed when a search is made and tracking results involves tracking who clicks on the ads and whether they convert, explore the new site or just bounce.

Users want ads to be relevant to their queries or to the webpage content they are viewing. Search engines, meanwhile, want to show ads that users like and will click on. There is also a risk of over-advertising to users – if they have no commercial intent they don’t want to see ads for instance.

Bounce rate is another critical measure. If it is high then users are not satisfied with what they found – “they said yuk and went away”. The lower the bounce rate the better the ad/landing page. Evaluating it is tricky. Advertisers can evaluate bounce rate by seeing if visitors don’t do anything on the page though a user could call a number and show up as a false positive. Search engine companies can track subsequent behavior to see if it was quick enough to imply a bounce. But this can be difficult also as users could start queries in a new tab but liked the landing page and kept it open.

There is a strong correlation between click through rate and bounce rate – interesting as the landing page is new content from the ad. Human evaluation of a site as “excellent” correlates to half the bounce rate. Curiously enough bounce rates vary a lot by language, though no particular conclusion can be drawn. Some keywords have very dependable bounce rates – for example navigational queries (to find the site for the New York Times, say) are very reliable.

Accurate prediction of bounce rate would allow ads to be assessed more quickly, with fewer clicks. This is especially important for ads with low impressions – “long tail” ads. To work on this the folks at Google tried both a logistic regression and a Support Vector Machine regression on two data sets. These data sets have 3.5M training/1.5M test and 4.8M training/2M test respectively. Every ad in both sets had 10 or more clicks. They extracted the ad keywords, ad creative and ad landing page. They had millions of parsed terms, millions of related terms, clusters of terms and categories/verticals as well as similarity measures between the elements of the ads.

They managed to predict bounce rates fairly well, at least for ads with lower bounce rates (of which there are more). The two different techniques had very similar predictive power, a sign of some underlying trends.They are focusing on how to help advertisers reduce bounce rate and on how to have the search engine increase user satisfaction.

More posts and a white paper on predictive analytics and decision management at decisionmanagementsolutions.com/paw

TAGGED:advertisingdata mininggooglepawpredictive analyticspredictive analytics worldsearch
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive
sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Predictive Analytics: 8 Things to Keep in Mind (Part 6)

6 Min Read

Defending Your Analytics: Handling Hecklers

9 Min Read

Analytics Can Answer: “Why Can’t … ?

6 Min Read
bigquery
Big DataCloud ComputingData Management

BigQuery Service: Next Big Thing Unveiled By Google on Big Data

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?