Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Why BI Development is Different
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Why BI Development is Different
Business Intelligence

Why BI Development is Different

EvanLevy
EvanLevy
4 Min Read
SHARE

When companies initially embark on their BI development initiatives, they often underestimate its complexity. Some begin BI in the first place because their packaged applications don’t deliver the reporting functionality they need. Others embark on BI because the data they need to analyze is located in multiple, disparate application systems. While positioning a data warehouse to integrate and store historical data from packaged applications, like ERP or CRM, is a reasonable and proven approach, many companies try to repurpose the development methods associated with these packages to deliver BI.

But comparing development methods and skill sets for these two divergent types of systems is like comparing picking apples to making a fruit salad. The fact is the methodology for building a data warehouse is very similar to traditional code development using lower-level programming languages. To be successful building a data warehouse, a team should have skills in business requirements gathering, functional requirements definition, specification and design, data modeling, database design, as well as all the skills associated with loading the data and coding the application. This is clearly…

When companies initially embark on their BI development initiatives, they often underestimate its complexity. Some begin BI in the first place because their packaged applications don’t deliver the reporting functionality they need. Others embark on BI because the data they need to analyze is located in multiple, disparate application systems. While positioning a data warehouse to integrate and store historical data from packaged applications, like ERP or CRM, is a reasonable and proven approach, many companies try to repurpose the development methods associated with these packages to deliver BI.

More Read

Why BI Doesn’t Work
TV By the Numbers: Measuring My Viewing Habits Online
First Look – SAS Customer Intelligence
Benefits of Using AI-Powered Plagiarism Checkers When Writing Academic Papers
Integrating the Commerce Experience: Salesforce to Acquire Demandware

But comparing development methods and skill sets for these two divergent types of systems is like comparing picking apples to making a fruit salad. The fact is the methodology for building a data warehouse is very similar to traditional code development using lower-level programming languages. To be successful building a data warehouse, a team should have skills in business requirements gathering, functional requirements definition, specification and design, data modeling, database design, as well as all the skills associated with loading the data and coding the application. This is clearly a complex mix of technical knowledge to deliver a business solution spanning everything from storage allocation to workload management to systems integration to application programming. The fact is you’re building something from scratch.

The packaged application world is complex in its own right, but it’s also very different, as are the skills and methodologies involved in building these environments. Most IT organizations accustomed to implementing packages use third-party firms to install and configure these systems. Their staff members don’t have the necessary skills to build these solutions, and often require training and multiple years of hands-on use to be proficient in supporting these systems. In addition, most organizations forget that implementing their business applications typically takes a year or longer.

When was the last time you were allowed a full year to implement your data warehouse? And was your team even half the size of the packaged app’s development team?

Link to original post

TAGGED:crmerp
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

See the Future with Your CRM

5 Min Read

Dreamforce 2011, the Recap

10 Min Read
Big Data

Top 10 Big Data CRM Tools To Increase Business Sales

9 Min Read

Componentizing Software

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?