By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: PAW: The unrealized power of data
Share
Notification Show More
Latest News
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing
become a data scientist
Boosting Your Chances for Landing a Job as a Data Scientist
Jobs
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > PAW: The unrealized power of data
Data MiningPredictive Analytics

PAW: The unrealized power of data

JamesTaylor
Last updated: 2009/02/19 at 7:50 PM
JamesTaylor
6 Min Read
SHARE

Live from Predictive Analytics World

Andreas Weigend, former amazon.com Chief Scientist, gave a keynote on the unrealized power of data. He started with a historical perspective. In the 70s perhaps 10M used computers, mostly in the back office. By the 80s this had reached 100M and the front office. By the 90s the internet and search brought 1Bn poking around and some customer-company interaction. Now there are perhaps 100M producing content on the web in peer-production and collaboration – customers are interacting with customers. Underlying all this is a drop in communication costs essentially to zero. Now people can contribute and fix data rather than simply consume it and the time to respond – the natural timescale – has disappeared.

Some trends:

  • There is now about 100Gb stored per person on the planet and it is doubling every year.
  • Market research can now combine explicit survey data with implicit behavior data
  • There is a move from models being assumption heavy to being data rich thanks to the number of visitors and the amount of information.
  • From knowing about transactions (enough for recommendation) to knowing interactions (enough for targeting) and ultimately relationships (can…

More Read

predictive analytics in dropshipping

Predictive Analytics Helps New Dropshipping Businesses Thrive

Data Mining Technology Helps Online Brands Optimize Their Branding
Promising Benefits of Predictive Analytics in Asset Management
What Role Does Big Data Have on the Deep Web?
Albanian Bitcoin Investors Tap the Power of Predictive Analytics


Live from Predictive Analytics World

Andreas Weigend, former amazon.com Chief Scientist, gave a keynote on the unrealized power of data. He started with a historical perspective. In the 70s perhaps 10M used computers, mostly in the back office. By the 80s this had reached 100M and the front office. By the 90s the internet and search brought 1Bn poking around and some customer-company interaction. Now there are perhaps 100M producing content on the web in peer-production and collaboration – customers are interacting with customers. Underlying all this is a drop in communication costs essentially to zero. Now people can contribute and fix data rather than simply consume it and the time to respond – the natural timescale – has disappeared.

Some trends:

  • There is now about 100Gb stored per person on the planet and it is doubling every year.
  • Market research can now combine explicit survey data with implicit behavior data
  • There is a move from models being assumption heavy to being data rich thanks to the number of visitors and the amount of information.
  • From knowing about transactions (enough for recommendation) to knowing interactions (enough for targeting) and ultimately relationships (can move to a long term relationship basis).

The customer data revolution has led companies to “sniff the digital exhaust” and there is far more implicit data like location. In addition, individuals like to talk about themselves creating more data and they reveal their relationships with others in all sorts of way. But to get this information, and thus be able to use it, companies have to have a consumer-centric point of view. They have to offer consumers something in return for their information.

Andreas talked about moving from Customer Relationship Management to Customer Managed Relationships. True customer-centricity empowers customers to make the best decisions they can. Customer value is one thing – what is this customer worth to a company – and companies have a value to a customer. Needs to become a bi-directional relationship.

Companies no longer “own” the customer – customers are more likely to evaluate multiple companies online, for instance. Companies don’t know more about their products any more – the web does – and even cannot control their message or branding.

Marketing 2.0 is different:

  • Communication is not just about companies targeting customers 1:1 but recognizing that customers communicate with each other 1:1.
  • Customers like to review products before they buy them and prefer peer reviews. 
  • Relationships also trump many other things. For instance marketing a phone product to those who were called by people who already owned it (using the relationships therefore of existing customers) outperformed a sophisticated marketing model by nearly 5:1. Network-based marketing or leveraging the social graph.
  • Have added all sorts of information about friends, peers, expert bloggers, annotations and more. Using this requires new approaches.

He outlined a five step approach to applying this thinking – PHAME – Problem, Hypothesis, Action, Metrics, Experiment:

  • Problem – defining the problem is key as many businesses have a problem different from what they think they have.
  • Hypothesis – come up with a hypothesis for a solution. This, to some extent, relies on a culture of experimentation.
  • Action – define the actions you are going to try in support of this hypothesis.
  • Metrics – spend some real time defining metrics and measures that will both show that something works and that will encourage movement in the direction you want.
  • Experiments – see what works, doing experiments is both expensive and yet it is cheaper than ignorance.

In conclusion he emphasized that communication costs falling to zero brings customers into the network but only if they get something back and only if the company respects the cost of their attention. Using relationships can result in dramatic results if a experimental and metric-driven culture can be created.

More posts and a white paper on predictive analytics and decision management at decisionmanagementsolutions.com/paw

TAGGED: amazon, customer data, data mining, paw, predictive analytics, predictive analytics world, relationship marketing
JamesTaylor February 19, 2009
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”1616″]

You Might also Like

predictive analytics in dropshipping
Predictive Analytics

Predictive Analytics Helps New Dropshipping Businesses Thrive

12 Min Read
data mining
Data Mining

Data Mining Technology Helps Online Brands Optimize Their Branding

7 Min Read
analyst,women,looking,at,kpi,data,on,computer,screen
Predictive Analytics

Promising Benefits of Predictive Analytics in Asset Management

11 Min Read
big data technology has helped improve the state of both the deep web and dark web
Big Data

What Role Does Big Data Have on the Deep Web?

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?