Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: IBM and ILOG – What Else?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > IBM and ILOG – What Else?
Business IntelligenceCRMData MiningPredictive Analytics

IBM and ILOG – What Else?

JamesTaylor
JamesTaylor
5 Min Read
SHARE

Last post in my series as I am off to DIALOG next week and will get a chance to meet some of the IBM folks and chat about their plans. Here, then, are some quickie ideas for ways IBM could use rules besides the ones I mentioned already:

  • Modernizing Legacy
    IBM customers have LOTS of legacy systems. Baking ILOG’s rules product into their legacy modernization approach in a decision service-centric way would let IBM move its clients towards SOA by sensibly extracting business logic (brutally hard to maintain on the mainframe) into coherent decision services built with JRules. These decision services run on the SOA/BPM stack to support new systems while the COBOL version of JRules means that the rules can be re-deployed back to the mainframe to keep the old system in synch with the new. It’s been done, it works and IBM could make it the standard operating procedure.
  • Expanding Optimization
    Optimization is under-utilized in information systems. With resouce and price optimization top of mind in a recession, IBM could use some of ILOG’s new optimization frameworks and its integration between busines rules a…


Copyright © 2009 James Taylor. Visit the original article at IBM and ILOG – What Else?.

Last post in my series as I am off to DIALOG next week and will get a chance to meet some of the IBM folks and chat about their plans. Here, then, are some quickie ideas for ways IBM could use rules besides the ones I mentioned already:

More Read

Role of Business Intelligence in Process Improvement
Storing and Mapping Your Life in 3D
Healthcare Mashups Podcast IBM researcher Ohad Greenshpan talks…
Capturing Knowledge, and Making it ‘Findable’ (2 of 4)
Quiet Revolution in Enterprise: Embracing Agile Strategy
  • Modernizing Legacy
    IBM customers have LOTS of legacy systems. Baking ILOG’s rules product into their legacy modernization approach in a decision service-centric way would let IBM move its clients towards SOA by sensibly extracting business logic (brutally hard to maintain on the mainframe) into coherent decision services built with JRules. These decision services run on the SOA/BPM stack to support new systems while the COBOL version of JRules means that the rules can be re-deployed back to the mainframe to keep the old system in synch with the new. It’s been done, it works and IBM could make it the standard operating procedure.
  • Expanding Optimization
    Optimization is under-utilized in information systems. With resouce and price optimization top of mind in a recession, IBM could use some of ILOG’s new optimization frameworks and its integration between busines rules and optimization to really expand the use of optimization in operaitonal systems – moving it from back-office decision support to front-office decision management. There’s already a center for business optimization at IBM and I think this one’s a gimme.
  • Events, Decisions, Action!
    In the same way that rules-based decisions can make processes simpler, smarter and more agile they can help on the event processing side. Making it easy to deploy the same decision logic as a decision service on the process side and as a “decision agent” on the event side can make it much easier for suitable business decisions to be made in response to events.
  • Decisions on Demand
    There are some interesting moves afoot from some vendors to deliver Decisions As A Service (DaaS) using the cloud to execute business rules and analytic models so that anyone, anywhere can have access to the right decision. As companies become more distributed and more dependent on a network of third parties, this capability becomes more and more appealing. After all you have a lot more choices in outsourcers or partners if you know that the decisions they make about pricing and treating customers will be the ones you manage. DaaS can deliver that.

I am sure there are others but this should be enough for now. Looking forward to blogging about IBM’s actual plans.

Previous


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

car expense data analytics
Data Analytics for Smarter Vehicle Expense Management
Analytics Exclusive
using accrual data to improve financial forecasts
Using Accrual Data to Improve Financial Forecasts
Big Data Exclusive
image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Stunning Business Intelligence Visualizations… from 1830

2 Min Read

Digitizing the Financial Industry [INFOGRAPHIC]

3 Min Read
AI based penny stocks trading
Artificial IntelligenceExclusiveFintechNews

Stock Trading Differences in the Age of Artificial Intelligence

5 Min Read

Top 14 Benefits of Business Intelligence – Part II

0 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?