Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Mining Methodologies
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Data Mining Methodologies
CRMData MiningPredictive Analytics

Data Mining Methodologies

romakanta
romakanta
6 Min Read
SHARE

I use the CRISP-DM methodology for all Data Mining projects as it is industry and tool neutral, and also the most comprehensive of all the methodologies available. Some Data Mining software vendors have come up with their own methodologies. Check them out.

MS SQL SERVER DATA MINING

1. Defining the Problem: Analyze business requirements, define the scope of the problem, define the metrics by which the model will be evaluated, and define specific ob…


I use the CRISP-DM methodology for all Data Mining projects as it is industry and tool neutral, and also the most comprehensive of all the methodologies available. Some Data Mining software vendors have come up with their own methodologies. Check them out.

MS SQL SERVER DATA MINING

1. Defining the Problem: Analyze business requirements, define the scope of the problem, define the metrics by which the model will be evaluated, and define specific objectives for the data mining project.

2. Preparing Data: Remove/handle bad data, find correlations in the data, identify sources of data that are the most accurate, and determining which columns are the most appropriate for use in analysis.

3. Exploring the Data: Calculate the minimum and maximum values, calculate mean and standard deviations, and look at the distribution of the data.

More Read

Rewrite the Rules
Big Social Data Can Unlock the Power of Engaged Viewers
Business Intelligence to Deliver the Real-time Business Answers
Apache Spark and Hadoop: The best big data solution for enterprises
KDD 2008

4. Building Models: Specify the input columns, the attribute that you are predicting, and parameters that tell the algorithm how to process the data.

5. Exploring & Validating Models: Use the models to create predictions, which you can then use to make business decisions, create content queries to retrieve statistics, rules, or formulas from the model, embed data mining functionality directly into an application, update the models after review and analysis or update the models dynamically, as more data comes into the organization.

ORACLE DATA MINING

1. Problem Definition: Specify the project objectives and requirements from a business perspective, formulate it as a data mining problem and develop a preliminary implementation plan.

2. Data Gathering and Preparation: Take a closer look at the data, remove some of the data or add additional data, identify data quality problems, and scan for patterns in the data. Typical tasks include table, case, and attribute selection as well as data cleansing and transformation.

3. Model Building and Evaluation: Select and apply various modeling techniques and calibrate the parameters to optimal values. If the algorithm requires data transformations, step back to the previous phase to implement them.

4. Knowledge Deployment: Can involve scoring (the application of models to new data), the extraction of model details (for example the rules of a decision tree), or the integration of data mining models within applications, data warehouse infrastructure, or query and reporting tools.

SEMMA from SAS

1. Sample the data by creating one or more data tables. The sample should be large enough to contain the significant information, yet small enough to process.

2. Explore the data by searching for anticipated relationships, unanticipated trends, and anomalies in order to gain understanding and ideas.

3. Modify the data by creating, selecting, and transforming the variables to focus the model selection process.

4. Model the data by using the analytical tools to search for a combination of the data that reliably predicts a desired outcome.

5. Assess the data by evaluating the usefulness and reliability of the findings from the data mining process.

CRISP-DM (CRoss Industry Standard Process for Data Mining)

1. Business Understanding: Understand the project objectives and requirements from a business perspective, convert this knowledge into a data mining problem definition, and a preliminary plan designed to achieve the objectives.

2. Data Understanding: Collect initial data and proceed with activities in order to get familiar with the data, to identify data quality problems, to discover first insights into the data, or to detect interesting subsets to form hypotheses for hidden information.

3. Data Preparation: Tasks include table, record, and attribute selection as well as transformation and cleaning of data for modeling tools.

4. Modeling: Select and apply various modeling techniques, calibrate their parameters to optimal values, step back to the data preparation phase if needed.

5. Evaluation: Evaluate the model, review the steps executed to construct the model, to be certain it properly achieves the business objectives. At the end of this phase, a decision on the use of the data mining results should be reached.

6. Deployment: Depending on the requirements, the deployment phase can be as simple as generating a report or as complex as implementing a repeatable data mining process. In many cases it will be the customer, not the data analyst, who will carry out the deployment steps.

http://datalligence.blogspot.com/

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive
data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Positioning your Database Start Up for Enterprise OLTP

14 Min Read

Let Me Share a Secret With You

4 Min Read

A reader asks – how to document decision logic

7 Min Read
predictive analytics helps Albanian bitcoin investors
Blockchain

Albanian Bitcoin Investors Tap the Power of Predictive Analytics

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?