Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Why We Need to Deal with Big Data in R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Why We Need to Deal with Big Data in R
AnalyticsR Programming Language

Why We Need to Deal with Big Data in R

DavidMSmith
DavidMSmith
3 Min Read
SHARE

Responding to the birth rates analysis in the post earlier this week on big-data analysis with Revolution R Enterprise, Luis Apiolaza asks at the Quantum Forests blog, do we really need to deal with big data in R?

Responding to the birth rates analysis in the post earlier this week on big-data analysis with Revolution R Enterprise, Luis Apiolaza asks at the Quantum Forests blog, do we really need to deal with big data in R?

My basic question is why would I want to deal with all those 100 million records directly in R? Wouldn’t it make much more sense to reduce the data to a meaningful size using the original database, up there in the cloud, and download the reduced version to continue an in-depth analysis?

As Luis points out (and as most of us know from experience), 90% of statistical data analysis is data preparation. Many “big data” problems are in fact analyses of small data sets, that have been carefully (and often painfully) extracted from a data store we’d refer to today as “Big Data”. And while we could use another tool to do that extraction, personally I’d prefer to do it in R myself. Not just because needing access to another tool probably means delays, authorizations, and probably having to ask a DBA nicely, but also because the extraction process itself (in my opinion) requires a certain level of statistical expertise.

More Read

Using predictive analytics for fantasy football
How The NBA Data And Analytics Revolution Has Changed The Game
Today’s Don Draper: Relying on Data Not Scotch for Inspiration
Business intelligence—and its predecessor concepts…
5 Free Programming and Machine Learning Books for Data Scientists

For me, at least, it’s often an iterative process of identifying the variables I need, the right way to do the aggregation/smoothing/dimension reduction, how to handle missing values and data quality issues … the list goes on and on. To be able to extract from a large data set using the R language alone is a great boon — especially when the source data set is very large. That’s why we created the rxDataStep function in RevoScaleR. (You can read more about rxDataStep in our new white paper, The RevoScaleR Data Step White Paper.)

Then again, some statistical problems simply do require analysis of very large datasets. wholesale. Some of the commenters to Luis’s post provide their own examples, and Revolution Analytics’ CEO Norman Nie has written a white paper identifying five situations where analysis of large data sets in R is useful:

  1. Use Data Mining to Make Predictions
  2. Make Predictive Models More Powerful
  3. Find and Understand Rare Events
  4. Extract and Analyze ‘Low Incidence Populations’
  5. Avoid Dependence on ‘Statistical Significance’

You can read Norman’s explanations of these uses of Big Data in the white paper, The Rise of Big Data Spurs a Revolution in Big Analytics, available for download at the link below.

Revolution Analytics White Papers: The Rise of Big Data Spurs a Revolution in Big Analytics

TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Negotiation Rules
AnalyticsBig Data

Big Data and Pricing Analytics Are Rewriting the Negotiation Rules

5 Min Read
The 7 Data Mistakes You’re Probably Making
Big DataExclusiveMarketingNews

The 7 Data Mistakes You’re Probably Making

6 Min Read

Does It Take a Scientist to Find Gold in Big Data?

0 Min Read

The Emerging Role of the Chief Data Officer and Data Scientist

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?