Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Why Text Analytics Is Important in Search
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Why Text Analytics Is Important in Search
Predictive AnalyticsSentiment AnalyticsSocial Media AnalyticsText AnalyticsUnstructured Data

Why Text Analytics Is Important in Search

mekkin
mekkin
4 Min Read
Image
SHARE

ImageChoosing the right keywords for search is the most important component of getting the results you’re looking for. Everyone knows this, but it’s easier said than done. Even with the most well thought out keywords, search results don’t always deliver what you’re expecting.

ImageChoosing the right keywords for search is the most important component of getting the results you’re looking for. Everyone knows this, but it’s easier said than done. Even with the most well thought out keywords, search results don’t always deliver what you’re expecting.

Improving the accuracy of search is of utmost importance to companies like Google and Yahoo, and one of the best ways to do this is to incorporate text analytics (AKA text mining) into the back end.

Let’s take a typical enterprise search engine and break down the steps that go into an actual search. First, a database of unstructured content is fed into a pipeline, where it is converted into a structured document. That document is then fed into an index, and when a person queries the index, results appear.

More Read

Predictive Analytics World (PAW) was a great event
Survivorship Bias
EDM Summit – some closing thoughts
Microsoft Buys Enterprise Social Network Vendor Yammer for $1.2B
Winning the first game in a baseball series: a harbinger, or not?

Text analytics occurs within the pipeline, before the content is indexed, where it analyses the content and extracts meaningful metadata such as entities being discussed, sentiment, and themes.

The information gained from the text mining process can then be used to create a more efficient search. A common tool for this purpose is faceted search. Any time you’ve used an advanced search option while using a search engine, you’ve been using faceted search. It is particularly useful because it enables cross-referencing through all of that metadata.

Faceted search engines come in a variety of complexities and flavours. Major retail websites use rudimentary faceted search to narrow down the categories in which you are searching, while databases such as ones for academic or legal documents may have a more complex set of cross referencing tools.

Text analytics is crucial for word sense disambiguation. Word sense disambiguation is the process of determining what meaning of a word that has multiple definitions is being used in a sentence.

In a typical string based search engine, a search for a term with multiple definitions is going to yield results for all possible uses of the word. Using text mining, the context of the rest of the sentence or phrase in which the word is located is used to determine what the word refers to, when that knowledge is applied to search, it improves the relevance of search results.

More than anything, text mining’s power in search is that it allows you to ask more general questions like “who’s hot and who’s not?” and “is there any breaking news I need to know?” and get results that actually answer those questions.

All in all, the ability to add context and extract metadata from unstructured content before it is indexed makes search engines a far more powerful tool.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Analyzing Logs and More – A Big Data Architecture

7 Min Read

Just as the media and businesses are coming to grips with Web…

1 Min Read

Business Analytics vs. Business Intelligence

5 Min Read

Predictive analytics – some tips

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?