Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What Should Data Developers Know About Kubernetes Troubleshooting?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > What Should Data Developers Know About Kubernetes Troubleshooting?
ExclusiveProgramming

What Should Data Developers Know About Kubernetes Troubleshooting?

Kubernetes is a great open source application for big data development, but you need to know how to troubleshoot properly.

Ryan Kh
Ryan Kh
8 Min Read
Kubernetes troubleshooting tips for data developers
Shutterstock Photo License - By dennizn
SHARE

We have previously talked about some of the open source tools available to create big data projects. Kubernetes is one of the most important that all big data developers should be aware of.

Contents
  • Common Types of Kubernetes Issues that Data Developers Must Recognize
    • Big Data Application Issues
    • Network Connectivity Issues
    • External Network Connectivity
    • Internal Network Connectivity
    • Pod Configuration Issues
    • Node Related Issues
  • Cluster Service/Component Issues
  • Infrastructure Issues
  • Troubleshooting Kubernetes Issues
    • Troubleshooting is a Vital Process for Data Application Developers Using Kubernetes

Kubernetes has become the leading container orchestration platform to manage containerized data-rich environments at any scale. It has vastly simplified container deployment and management yet with the added complexity of managing clusters. Therefore, we need to understand the underlying architecture as well as common issues in order to speed up the Kubernetes troubleshooting process if you want to create big data applications.

Common Types of Kubernetes Issues that Data Developers Must Recognize

Due to the complexity of Kubernetes, it can take considerable time and resources to troubleshoot issues in even relatively small K8s clusters such as dev or testing environments, especially if they have massive amounts of data sets. However, we can simplify this process by categorizing different issue types and narrowing down the troubleshooting scope for data-driven developers.

Big Data Application Issues

The first thing we need to ensure when troubleshooting Kubernetes is that the application is working as expected. This can be a challenge for applications that are highly dependent on complex data sets. Otherwise, we will be unnecessarily troubleshooting an issue that is not related to Kubernetes. This can be done by testing container functionality either in a holistic data-driven test environment or even in a local environment. This is one of the most important things to be aware of as a data-driven software developer.

More Read

ai with podcast marketing
Use AI to Expand the Reach of Your New Podcast
5 Ways to Use Big Data to Run a Successful Food Franchise
Merging Big Data and Cloud Computing is the Future of Robotics
Why Big Data Is Essential To Digital Product Sales
When Big Data Turns Into a Big Nightmare!

Network Connectivity Issues

Connectivity issues can be categorized as internal connectivity issues that occur within the cluster and external connectivity issues that block access to the cluster or third-party data sets.

External Network Connectivity

Kubernetes clusters can be configured with external load balancers and firewalls to further enhance and complement internal Kubernetes configurations. In these instances, we need to check if any issues or configurations of these external networking resources block the Kubernetes cluster.

Internal Network Connectivity

Kubernetes network will consist of the following connectivity types;

  • Container to container
  • Pod to Pod
  • Pod to service
  • Service to external sources

Each connectivity type can contribute to a multitude of errors. The ideal approach for troubleshooting these network connectivity issues is to start from external connectivity options like k8s ingress and then move to services like load balancers, node ports, then pods, and finally, container connectivity. With each step, we reduce the troubleshooting scope by simply checking if communication between the correct resources happens.

Pod Configuration Issues

One of the most common issues faced by Kubernetes admins is Pod configuration issues. These issues can range from faulty deployment configurations, container image corruptions to issues in the node itself. However, they are also the simplest to diagnose as Kubernetes provides clear error messages indicating the root cause of an issue. Furthermore, we can easily figure out issues related to pods by looking at the Pod status or using describe or log commands.

Node Related Issues

These issues occur when the worker nodes are experiencing issues. Various node-related issues such as network issues, hardware failures, data loss or failures in provisioning issues in a node can directly impact pod creation and management, which will in turn directly impact the application. Kubernetes has built-in redundancy, which enables the application to recover even if some nodes fail. However, these node failures can cause performance degradations, and the best way to avoid such scenarios is to try to mitigate node failures. The Node Problem Detector provides an ideal solution to monitor the health of the k8s nodes and ensure maximum data stability.

Cluster Service/Component Issues

Kubernetes consists of multiple components that are required for smooth cluster operations. Especially different types of controllers from replication controllers, scaling controllers to resource controllers like node controller, services controller, etc. Issues in these components can even lead to complete cluster failures as they deal with the core functionality of Kubernetes. Thus, high availability architecture is used in most production environments to mitigate such errors. It enables the cluster to function normally even if one Kubernetes control plane fails.

Infrastructure Issues

Infrastructure-related issues are only applicable for self-managed Kubernetes clusters as the service provider is responsible for all the infrastructure in managed solutions. These issues are highly dependent on the underlying hardware and software configurations, requiring considerable time and effort to pinpoint and remedy them. As these infrastructure issues are outside the scope of Kubernetes, users will need external monitoring and diagnostic tools and services to help troubleshoot them.

Troubleshooting Kubernetes Issues

Kubernetes comes with an excellent toolset for monitoring, logging, and debugging. Therefore, it is essential to utilize all these inbuilt tools and services when troubleshooting Kubernetes clusters.

The kubectl itself provides a simple yet powerful command set to troubleshoot Kubernetes resources easily. These commands include the describe command to obtain information on Pods/Nodes, exec command to gain shell access to a container, etc. Resource metric pipeline that uses the Metrics API (kubectl top) is also a great tool for getting a broader understanding of the behavior of K8s resources quickly.

Another factor is logs. Logs are sometimes underappreciated yet critical to troubleshooting as they can provide a complete view of the issues and events that led to a particular issue. K8s logging architecture provides a robust platform to enable cluster-level logging utilizing third-party logging backends to store and analyze data.

On top of that, we can use third-party tools and services to complement inbuilt tools and simplify Kubernetes troubleshooting even further. Crash-Diagnostics and KubeEye are examples of some open-source external k8s troubleshooting tools.

Troubleshooting is a Vital Process for Data Application Developers Using Kubernetes

Kubernetes troubleshooting is itself a complex subject matter. However, as Kubernetes users, we must be able to troubleshoot K8s without being overwhelmed by this complexity. The best approach is to minimize the troubleshooting scope and use all the tools and services at your disposal to identify and resolve Kubernetes issues easily.

TAGGED:data-driven software developmentopen source software strategysoftware development
Share This Article
Facebook Pinterest LinkedIn
Share
ByRyan Kh
Follow:
Ryan Kh is an experienced blogger, digital content & social marketer. Founder of Catalyst For Business and contributor to search giants like Yahoo Finance, MSN. He is passionate about covering topics like big data, business intelligence, startups & entrepreneurship. Email: ryankh14@icloud.com

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

cost of hiring a software developer with a background in data sciences
Software

What is the Cost of Hiring Data Savvy Software Developers?

10 Min Read
testing strategies when creating AI software
Software

Different Software Testing Strategies When Creating AI Applications

9 Min Read
application performance monitoring with data-driven software development
Big Data

The Role of Application Performance Monitoring in Big Data Application Development

5 Min Read
ai for embedded software development
Software

AI and ChatGPT Are Changing Embedded Software Development

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?