Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Using esProc to Compute the Online Time of Users [PART 2]
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Using esProc to Compute the Online Time of Users [PART 2]
Software

Using esProc to Compute the Online Time of Users [PART 2]

raqsoft
raqsoft
5 Min Read
SHARE

In last part we mentioned that the Operation Department of the Web Company brought about a new demand: adding new conditions to the way the online time are computed. As IT department was using esProc as the tool for computation, it’s easy to handle such changes in requirements. On the other hand, the increasing amount of data could be accommodated by out-of-memory computation with esProc’s file cursor functionality. 

In last part we mentioned that the Operation Department of the Web Company brought about a new demand: adding new conditions to the way the online time are computed. As IT department was using esProc as the tool for computation, it’s easy to handle such changes in requirements. On the other hand, the increasing amount of data could be accommodated by out-of-memory computation with esProc’s file cursor functionality. 

Previously, the Operation Department provided the following requirements for computation of users online time:

1. Login should be considered as the starting point of online time, and overnight should be take into consideration.

2. If the time interval between any two operations is less than 3 seconds, then this interval should not be added to online time.

3. If after login, the time interval between any two operations is longer than 600 seconds, then the user should be considered as logged out.

4. If there is only login, without logout, then the last operation time should be treated as time for logout.

Over time, the operations department found that there are some “key point” in users behavior: between login and logout, user who conducted post actions are more loyal to the online application. Therefore, the Web Company plans to introduce an incentive: Based on the original rules, if a user conducted a post operation, his/her online time will be tripled in computation.

After receiving the task, the IT engineer considered the possibility for future adjustment in the way of computation, plus the need for added conditions. The decision is to use out-memory cursor and for loop to realize the computation.

After analysis, it’s found that most user behavior analysis are done for each user independently. Thus, if the logfile are pre-sorted according to userid, the performance for various analysis computation will be raised, with reduced difficulty and shortened process time. The pre-processing programming are as following:


As we could see, pre-processing means that we sort and output the seven days log files to a binary file. This way we can eliminate the need for subsequent consolidation and sort.Meanwhile, the binary files provided by esProc can also help to raise the data/write performance for data.

After pre-processing, the codes for online time computation could be written as following:

More Read

big data applications
What Are Your Big Data Application Options?
Pros and Cons of Using MySQL for Analytical Reporting
How Open is Too Open?
Google and Apache Hadoop: A Match Made in the Cloud
SAS ODS Report Writing Interface: A Quick Demo


Note that:
1. The volume of data for one user n seven days is not big. Thus in cell A5 we can retrieve all log data for a user into memory in one batch.

2. In the one-loop-for-each-user cycle, the codes in red box implemented the computation of the new business logic: for every post operation conducted, the users’ current time online time will be tripled in computation. The removal of unqualified record is done in cell B9, and in B10 we calculate a serial number for every login (lognum). Records are grouped in B10 according to lognum, to compute the sum of online time for each group. If there is at least one “post” action in the current group of operations, then the sum of online time for current group will be tripled.

3. Considering the relatively large data resulted, when the computation is done for 10,000 users, and the result also reach 10,000 lines, we’ll do a batch output of the data from memory to a result file. This improves the performance while avoiding the memory overflow at the same time.

After meeting this demand, the IT engineers in Web Company found that the single-threaded program does not take full advantage of the of the server’s computing power. Here comes another question: can these engineers leverage esProc’s multi-threaded parallel computing capabilities to take full advantages of the server’s quaddual core CPUs? Is it troublesome to shift from single-threaded to multiple-threaded? See “Computing the Online Time for users with esProc (III)”.

TAGGED:esProc
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Vector Computing, Who Is More Powerful, R Language or esProc?

6 Min Read

esProc Improves Text Processing: Fetching Data from a Batch of Files

6 Min Read

Simple Inter-row Computation: esProc Keeps It Simple!

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?