Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Top Ten Root Causes of Data Quality Problems: Part 2
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > Top Ten Root Causes of Data Quality Problems: Part 2
Culture/LeadershipData Quality

Top Ten Root Causes of Data Quality Problems: Part 2

SteveSarsfield
SteveSarsfield
5 Min Read
SHARE

Part 2 of 5: Renegades and Pirates

Part 2 of 5: Renegades and Pirates
In this continuing series, we’re looking at root causes of data quality problems and the business processes you can put in place to solve them.  In part two, we examine IT renegades and corporate pirates as two of the root causes for data quality problems.

Root Cause Number Three: Renegade IT and Spreadmarts
A renegade is a person who deserts and betrays an organizational set of principles. That’s exactly what some impatient business owners unknowingly do by moving data in and out of business solutions, databases and the like. Rather than wait for some professional help from IT, eager business units may decide to create their own set of local applications without the knowledge of IT. While the application may meet the immediate departmental need, it is unlikely to adhere to standards of data, data model or interfaces. The database might start by making a copy of a sanctioned database to a local application on team desktops. So-called “spreadmarts,” which are important pieces of data stored in Excel spreadsheets, are easily replicated to team desktops. In this scenario, you lose control of versions as well as standards. There are no backups, versioning or business rules.

Root Cause Attack Plan

More Read

Image
Investigating the Potential of Data Preparation
Norman Nie on Two Big Problems with Big Data
Not Only SQL, Not Only Big Data
Sizing Up Data For CRM: Big Doesn’t Mean Valuable Data
Helpful or Creepy? Avoid Crossing the Line with Big Data
  • Corporate Culture – There should be a consequence for renegade data, making it more difficult for the renegades to create local data applications.
  • Communication – Educate and train your employees on the negative impact of renegade data.
  • Sandbox – Having tools that can help business users and IT professionals experiment with the data in a safe environment is crucial. A sandbox, where users are experimenting on data subsets and copies of production data, has proven successful for many for limiting renegade IT.
  • Locking Down the Data – A culture where creating unsanctioned spreadmarts is shunned is the goal.  Some organizations have found success in locking down the data to make it more difficult to export.


Root Cause Number Four: Corporate Mergers

Corporate mergers increase the likelihood for data quality errors because they usually happen fast and are unforeseen by IT departments. Almost immediately, there is pressure to consolidate and take shortcuts on proper planning. The consolidation will likely include the need to share data among a varied set of disjointed applications. Many shortcuts are taken to “make it happen,” often involving known or unknown risks to the data quality.
On top of the quick schedule, merging IT departments may encounter culture clash and a different definition of truth.  Additionally, mergers can result in a loss of expertise when key people leave midway through the project to seek new ventures.

Root Cause Attack Plan

  • Corporate Awareness – Whenever possible civil division of labor should be mandated by management to avoid culture clashes and data grabs by the power hungry.
  • Document – Your IT initiative should survive even if the entire team leaves, disbands or gets hit by a bus when crossing the street.  You can do this with proper documentation of the infrastructure.
  • Third-party Consultants – Management should be aware that there is extra work to do and that conflicts can arise after a merger. Consultants can provide the continuity needed to get through the transition.
  • Agile Data Management – Choose solutions and strategies that will keep your organization agile, giving you the ability to divide and conquer the workload without expensive licensing of commercial applications.

This post is an excerpt from a white paper available here. More to come on this subject in the days ahead.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How to Get Started with Value Add Forecasting

6 Min Read

3 Big Data Pitfalls and How to Avoid Them

5 Min Read

5 Tips to Consider When Designing Supply Chain Key Performance Indicators

5 Min Read
Market Trends
AnalyticsBig DataBusiness IntelligenceBusiness RulesData QualityPredictive AnalyticsWeb Analytics

In a World Full of Data, Can Analytics See the Market Trends?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?