By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Three Ways to Analytic Impact
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Three Ways to Analytic Impact
AnalyticsData QualityText Analytics

Three Ways to Analytic Impact

RamaRamakrishnan
Last updated: 2011/07/26 at 10:05 PM
RamaRamakrishnan
6 Min Read
SHARE

At work every day, we work on analytic problems that are important to retailers. Solving these problems in a better way has the potential for substantial impact.

At work every day, we work on analytic problems that are important to retailers. Solving these problems in a better way has the potential for substantial impact.

Very often, our first instinct is to find/devise a better algorithm to throw at the problem. This is not a bad thing to do since the rate of progress in machine learning is high and you never know what powerful new algorithm popped up yesterday (example: Least Angle Regression, an important new prediction algorithm published in 2004, was invented by a researcher as he was reading the 2001 edition of the “data science” bible, Elements of Statistical Learning). Trying the latest and greatest algorithm may well solve the problem better than previous approaches.

More Read

data analytics in sports industry

Here’s How Data Analytics In Sports Is Changing The Game

Advances in Data Analytics Are Rapidly Transforming Nursing
Data Analytics Technology Proves Benefits of an MBA
Data Analytics Helps Marketers Substantially Boost Image SEO
5 Benefits of Analytics to Manage Commercial Construction

However, many problems are stubbornly resistant to this approach. What then?

One of my favorites is to get better data. Not more data, but data that’s different from what has been used to solve the problem so far. If you have used demographic data, add purchase data. If you have both, add browsing data.  If you have numeric data, add text data (aside: in recent work, we have seen very promising results from complementing traditional retail sales and promotions data with text data for customer modeling and personalization).

Peter Norvig, Director of Research at Google and co-author of one of the most lucid textbooks I have had the pleasure of reading (Artificial Intelligence), makes a compelling case for data in The Unreasonable Effectiveness of Data. Anand Rajaraman, a machine learning guru and entrepreneur who writes the insightful datawocky blog, argues that more data beats better algorithms.

Better algorithms, better data. Anything else?

There is. It is re-thinking the problem. (Don’t stop reading, I am not about to inflict on you the “every problem is an opportunity” advice reliably served up by inspirational speakers)

Along with trying new algorithms or adding different data, it is often helpful to step back and confirm that the problem as formulated truly matches what the business cares about.

Take the “customer targeting” problem that arises in direct marketing. Customer targeting is about deciding which customers should be mailed (since mailing every customer is expensive). This is an old problem that has been studied by numerous researchers and practitioners. The most commonly used approach is as follows:

  1. send a test mailing to a sample of customers
  2. use the results of the test mailing to build a “response model” that predicts each customer’s propensity to respond to the mailing as a function of their attributes, past history etc.
  3. use this model to score each customer in the database and mail to the top scorers.

This looks reasonable and may well be what the business cares about. But perhaps not.

The words “response model” suggest that the mailing caused the customer to respond. In reality, the customer may have come into the store and made a purchase anyway (I am thinking of multichannel retailers and not pure-play catalog retailers. For the latter, without the catalog, it may be impossible for customers to make a purchase so the word “response” may be appropriate).

What these response models really do is identify customers who are likely to shop rather than customers likely to shop as a result of the mailing. But may what management really wants is the latter. Fo those customers who are either going to shop anyway or not going to shop regardless of what is mailed to them, mailing is a waste of money and potentially costs customer goodwill too. What the business may really want is to identify those customers who will shop if mailed, but won’t if not mailed.

This re-framing of the customer targeting problem and approaches for solving it are relatively recent. It goes by many names – uplift modeling, net lift modeling – and the academic work on it (good recent example) is quite minimal compared to traditional response modeling. Yet, for many retailers, this is a more relevant and useful way to frame and solve the customer targeting problem than doing it the old way.

One nice thing about re-framing the problem is the likelihood of finding low-hanging fruit. Since the new problem hasn’t received enough attention (by definition), simple algorithms may yield benefits quickly.

In summary, these three roads – better algorithms, better data and a better problem definition – all have merit and play a part in our analytic journey.

(cross-posted from the CQuotient blog)

 

RamaRamakrishnan July 26, 2011
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data analytics in sports industry
Big Data

Here’s How Data Analytics In Sports Is Changing The Game

6 Min Read
data analytics on nursing career
Analytics

Advances in Data Analytics Are Rapidly Transforming Nursing

8 Min Read
data analytics reveals the benefits of MBA
Analytics

Data Analytics Technology Proves Benefits of an MBA

9 Min Read
data-driven image seo
Analytics

Data Analytics Helps Marketers Substantially Boost Image SEO

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?