Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Text Mining Strategies and Limitations with Scalable Data Solutions
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Text Mining Strategies and Limitations with Scalable Data Solutions
Big DataData Mining

Text Mining Strategies and Limitations with Scalable Data Solutions

Rehan Ijaz
Rehan Ijaz
5 Min Read
Text Mining
SHARE

Unstructured data has created a number of unique challenges for data scientists in the brands that depend on them. Textual data is one of the prime examples of this challenge.

Contents
  • Many organizations rely on open ended survey feedback
  • Projecting social media trends
  • Competitive analysis
  • What are the limitations of textual data mining?

Textual content isn’t normally associated with big data. However, it is becoming increasingly important as more organizations depend on open ended, unstructured data in text formats.

Before we can elaborate on the challenges in textual data mining, it is important to cover the applications. Here are some reasons that text mining and textual analysis is becoming so important.

Many organizations rely on open ended survey feedback

Gallup, Pew and many other market research firms rely extensively on close ended questions with numerical imports corresponding to each given answer. Although the data from the surveys can be eye-opening, it doesn’t give participants the opportunity to share any context pertaining to the issues.

More Read

MasterCard Applies Big Data to Help Retailers Achieve Better Results
10 Reasons People Cringe at Big Data, But Shouldn’t
We’re SO predictable… but you knew I would say that.
Why Oh Why Is It So Difficult? Implementing Sales and Operations Planning
A free book on Geostatistical Mapping with R

A growing number of organizations are starting to realize that open ended questions are particularly important. Participants need an opportunity to elaborate, so they can share insights that the survey creators may not have even considered relevant at the time.

Mining textual data from these surveys can be a great starting point for future surveys and follow-up research.

Projecting social media trends

Social media trends have a very important impact on just about every organization. They are also notoriously difficult to predict. Even as they are gaining momentum, it is easy to overlook them.

Textual data mining makes it easier to observe and forecast trends on social media. Many of the older social media tools rely solely on tracking structured types of data, such as known hashtags. The scope of their analysis is much more limited, so newer social media predictive analytics tools also track unstructured data from major social media platforms. Many of these tools are used to implement word maps and other big data visualization techniques to reflect the level of usage of a given social media term.

Competitive analysis

Many textual data mining tools are used for competitive analysis. They can scrape data from competitor websites, Yelp profiles and other digital properties.   Organizations can use these tools to determine:

  • The primary angle of their competitors’ marketing strategies.
  • The price point of their competitors’ products.
  • The number of competitors in a given market.
  • General reception of competitors based on customer reviews.

There are a number of tools that provide these types of analyses. Compete.com used to provide competitive reports, along with search engine rankings of various companies. Local Business Extractor is a tool that allows companies to mine all known Google Places listings and websites to identify competitors in specific regions. This tool can evaluate the text on these profiles to find terms related to a specific industry. It helps make educated guesses, so brands don’t need to use specific tags to appear in the results.

What are the limitations of textual data mining?

Textual data mining is playing an important role in the evolution of big data. Unfortunately, the technology is still a work in progress and there are some important limitations.

One of the biggest challenges is determining the length of strings to process in textual analysis. Went textual data mining tools try to extract and analyze longer strings of characters, they are going to find fewer data points that meet their parameters. They will be able to process a larger volume of textual queries by focusing on shorter strings. However, the accuracy of those analyses will be lower for many applications, because they will have a harder time understanding the context of short of strings.

They must also try to factor for spelling errors and other inconsistencies. Modern texture of data mining tools can usually factor for these variances, but they aren’t 100% accurate.

TAGGED:structured vs unstructured datatext miningtextual analysisunstructured data
Share This Article
Facebook Pinterest LinkedIn
Share
ByRehan Ijaz
Follow:
Rehan is an entrepreneur, business graduate, content strategist and editor overseeing contributed content at BigdataShowcase. He is passionate about writing stuff for startups. His areas of interest include digital business strategy and strategic decision making.

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data will change businesses in 2018
Big Data

How Big Data Will Change Businesses In 2018

6 Min Read
Structured Data vs Unstructured Data
AnalyticsBig DataData ManagementData MiningHadoopMapReduceMarketingSocial DataStatisticsUnstructured DataWeb Analytics

A Quick Guide to Structured and Unstructured Data

7 Min Read

Yahoo! CEO Marissa Mayer on Data Portabilty

3 Min Read

A computer program predicts Viral Tweets

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?