By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Support Vector Clustering: An Approach to Overcome the Limits of K-means
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Support Vector Clustering: An Approach to Overcome the Limits of K-means
AnalyticsData Visualization

Support Vector Clustering: An Approach to Overcome the Limits of K-means

cristian mesiano
Last updated: 2011/09/26 at 9:24 AM
cristian mesiano
5 Min Read
SHARE

Some time ago, I posted a banal case to show the limits of K-mean clustering. A follower gave us a grid of different clustering techniques (calling internal routines of Mathematica) to solve the case discussed.

As you know, I like to write by myself the algorithms and I like to show alternative paths, so I’ve decided to explain a powerful clustering algorithm based on the SVM.

Some time ago, I posted a banal case to show the limits of K-mean clustering. A follower gave us a grid of different clustering techniques (calling internal routines of Mathematica) to solve the case discussed.

More Read

data analytics in sports industry

Here’s How Data Analytics In Sports Is Changing The Game

Advances in Data Analytics Are Rapidly Transforming Nursing
Data Analytics Technology Proves Benefits of an MBA
Data Analytics Helps Marketers Substantially Boost Image SEO
5 Benefits of Analytics to Manage Commercial Construction

As you know, I like to write by myself the algorithms and I like to show alternative paths, so I’ve decided to explain a powerful clustering algorithm based on the SVM.

To understand the theory behind SVC (support vector clustering) I strongly recommend  you have a look at: http://jmlr.csail.mit.edu/papers/volume2/horn01a/rev1/horn01ar1.pdf . In this paper you will find all of the technical details explained with extremely clarity.

As usual I leave the theory to the books and I jump into the pragmatism of the real world.

Consider the problem of a set of points having an ellipsoid distribution: we have seen in the past that K-means doesn’t work in this scenario, and even trying different tweaks changing the position of the centroids and its number of centroids, the final result is always unacceptable.

SVC is a clustering algorithm that takes as input just two parameters (C and q) both of them real numbers. C is to manage the outliers and q is to manage the number of clusters. Be aware that q is not directly related with the number of clusters!! Tuning q  you can manage the “cluster granularity” but you cannot decide a priori the number of clusters returned by the algo.


How to implement SVC.
There are many implementations of SVC, but I would like to show different tools (I love broadening the horizons…), so the ingredients of the daily recipe are: AMPL & SNOPT.

Both of them are commercial tools but to play with small set of points (no more than 300) you can use for free the student license!

AMPL is a comprehensive and powerful algebraic modeling language for linear and nonlinear optimization problems, in discrete or continuous variables and SNOPT is a software package for solving large-scale optimization problems (linear and nonlinear programs).

AMPL allows the user to write the convex problem associated to SVC’s problem in easy way:

The AMPL file for SVC

And SNOPT is one of the many solvers ables to work with AMPL.

In the former image, after the statement “param x: 1  2   3   :=” there are the list of 3D points belonging to our data set.
One of the characteristics of SVC is the vector notation: it allows to work with high dimensions without changes in the development of the algorithm.
2D Problem 
Let’s show the application of SVC in our ellipsoid data set
300 pt having ellipsoid distribution.  The first contour of SVC  has been depicted in black.   
The above image shows the clusters (depicted like connected components of a graph…read further details in the mentioned paper) returned by SVC and plotted by Mathematica.

3D problem
Just to show the same algorithm working in 3D on the same problem:

3D points having ellipsoid distribution.
And here are the SVC results plotted by Mathematica:
SVC applied on the former data set
As you can see in both scenarios SVC is able to solve the easy problem that K means cannot manage.
PS
We will continue the text categorization in the next post… From time to time I allow to myself some divagation. 


cristian mesiano September 26, 2011
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data analytics in sports industry
Big Data

Here’s How Data Analytics In Sports Is Changing The Game

6 Min Read
data analytics on nursing career
Analytics

Advances in Data Analytics Are Rapidly Transforming Nursing

8 Min Read
data analytics reveals the benefits of MBA
Analytics

Data Analytics Technology Proves Benefits of an MBA

9 Min Read
data-driven image seo
Analytics

Data Analytics Helps Marketers Substantially Boost Image SEO

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?