Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Strained Data Science Analogy
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > A Strained Data Science Analogy
Data Management

A Strained Data Science Analogy

DavidMSmith
DavidMSmith
3 Min Read
SHARE

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores.

In the sponsored article Data Science: Buyer Beware at Forbes, SAP’s Ray Rivera takes a dim view of Data Science. According to Rivera, Data Science is a “management fad” in the mold of Business Process Reengineering, and casts data scentists as self-ordained “gurus” whose mission is to stand between the “ignorant masses” that need access to data and a company’s valuable data stores. He likens data scientists to the icemen of the olden days, keen to provide a handcrafted service instead of the newfangled automated solution: 

I don’t want no iceman
I’m gonna get me a Frigidaire …
I don’t want nobody
Who’s always hangin’ around.

If you’ve been following my writings about data science on this blog or in my webinar on the Rise of Data Science, you’ll know I find this viewpoint to be total bunk. (So does Melinda Thielbar, who offers an excellent critique of Rivera’s post from the perspective of a practicing data scientist.) First, Data Science definitely isn’t a management process, and it’s certainly not a fad: statistical analysis, one of the three components of Data Science, has been used in companies for more than 100 years, and the advent of Big Data and all of its applications has only solidified its importance in recent years. Secondly, acting as a gatekeeper to data is the antithesis of Data Science: a data scientist’s main focus should be on liberating data by creating data apps that provide on-demand access to data analysis, while implementing the unique expertise that data scientists provide. 

There’s much more I could say about this, but my thoughts are captured in detail in this podcast at the IBM Big Data Hub. In my conversation with David Pittman we also cover whether Data Science is “sexy” (note: there’s no such thing as a calendar on the theme of “Guys and Gals of Data Science”), and how the R language is an ideal platform for creating data apps. You can listen to the podcast at the link below.

More Read

Why Predicting the Future is So Darn Difficult
Web Report Studio: Switch Report Sections to Tabs in Snap!
CASBs Help Cloud-Based Businesses Avoid Data Breaches
How to Innovate in a Bureaucratic Culture
SAP’s New Fraud Management Analytical Application

IBM Big Data Hub: Rebuffing “Buyer Beware” Attitude on Data Science

TAGGED:Data ScienceRay Rivera
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data science for android apps
Big DataData ScienceExclusive

Experts Reveal Data Science Behind Five Popular Android Apps

7 Min Read
data scientist
AnalyticsBig DataBusiness IntelligenceJobs

Data Scientist Scarcity: Automation Is the Answer

5 Min Read
data catalog big data quality
Big DataData QualityPolicy and Governance

Turbo-Charge Data Scientist Productivity with a Data Catalog

8 Min Read
macbook pro mac
Data Science

Mac Troubleshooting Guidelines Data Scientists Must Be Aware Of

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?