Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Statistics vs. Data Science vs. BI
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > Statistics vs. Data Science vs. BI
Big DataBusiness IntelligenceCulture/LeadershipJobsStatistics

Statistics vs. Data Science vs. BI

DavidMSmith
DavidMSmith
4 Min Read
SHARE

As someone who trained as a statistician, I’ve always struggled with that title. I love the rigor and insight that Statistics brings to data analysis, but let’s face it: Statistics — the name — has always had a bit of a branding problem. Telling someone I was a statistician was more likely to conjure up images of me counting runs at a baseball (or cricket) game than pursuing serious science.

As someone who trained as a statistician, I’ve always struggled with that title. I love the rigor and insight that Statistics brings to data analysis, but let’s face it: Statistics — the name — has always had a bit of a branding problem. Telling someone I was a statistician was more likely to conjure up images of me counting runs at a baseball (or cricket) game than pursuing serious science. And the image of what Statistics ideally is about — collaborative, interactive, applied, fun — was too often subsumed by the stereotype image — isolated, actuarial, ivory tower, report driven. (And hey, even actuaries can be fun sometimes.)

That’s why I’m a fan of the term “data scientist” — it embodies everything that Statistics always should be, without the baggage and tradition of the term “statistician”. So I enjoyed participating in yesterday’s Kalido webinar “Data Scientist: Your Must-Have Business Investment Now” where I could make the following contrast between the images of Statisticians and Data Scientists:

Statistics v Data Science

More Read

data-driven marketing
Data-Driven Digital Marketing Carves Competitive Edge For SMEs
The Best Uses Of Data And Tech In The Gaming Industry
Data Mining Combined With Predictive Modeling Equal 3D Data Visualization
Marketing Optimization with LityxIQ
Combat AI-Powered Threats with Cybersecurity Simulations & Other Practices

(A quick aside on the “Data Size” row above: while the unstructured or unaggregated data source data that data scientist work with can be in the terabytes range or even large, by the time it’s cleaned and prepared for statistical modeling, a file in the gigabytes range is even more typical — even at “Big Data” companies like Facebook. This is a topic I cover in more detail in my recent Strata talk on real-time predictive analytics.)

So bottom line: while I am a statistician, and I love Statistics dearly, I do prefer to call myself a Data Scientist today, because it better represents to me what Statistics really is to me (if that makes sense). And that’s certainly not to diminish the achievements of those who do call themselves Statistician. In particular, I want to recognize George Box: a true hero of mine, coiner of the idiom “all models are wrong, but some are useful”, and one of the nicest people I ever met, who sadly passed away in March.

On the other hand, I have no qualms about making a competitive comparison between Data Science and Business Intelligence:

Data Science v BI

You can get the details of how I differentiate Statistics and Data Science and BI, and hear other perspectives on Data Science from fellow data scientists Carla Gentry and Gregory Piatetsky in the slide sand replay of the webinar provided by Kalido at the link below.

Kalido: Data Scientist: Your Must-Have Business Investment NOW

TAGGED:Data Scientist
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

principles of data science
Data Science

7 Misconceptions About Data Science

7 Min Read

Defining “Data Scientist”, cont’d

2 Min Read
big data scientists build bridges
AnalyticsPredictive Analytics

Big Data Scientists Are Bridge Builders

4 Min Read

Data Scientist Team: Question and Answer

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?