Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Statisticians Push Back Against the “End of Theory” Problem
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Statistics > Statisticians Push Back Against the “End of Theory” Problem
Statistics

Statisticians Push Back Against the “End of Theory” Problem

tkorte
tkorte
3 Min Read
Image
SHARE

For years, some commentators have worried that increasing volumes of data coupled with better and better automated prediction methods would lead to an “end of theory.” What they mean is that the sorts of insights traditional statisticians like to be able to infer from their models of the world (those observations that can be generalized and applied to other problems) are often absent from machine learning algorithms that automatically select hundreds or thousands of parameters.

For years, some commentators have worried that increasing volumes of data coupled with better and better automated prediction methods would lead to an “end of theory.” What they mean is that the sorts of insights traditional statisticians like to be able to infer from their models of the world (those observations that can be generalized and applied to other problems) are often absent from machine learning algorithms that automatically select hundreds or thousands of parameters. The machine learning methods often work extraordinary well for prediction, but they only give answers—they do not teach lessons.

ImageDr. Ryan Tibshirani, an Assistant Professor of statistics at Carnegie Mellon University, is trying to fix that. Tibshirani and his colleagues (including his father, famed statistical methodologist Dr. Robert Tibshirani) have developed a new method that hopes to satisfy both the prediction and inference sides of statistics, offering traditional statisticians insights while preserving the adaptability and predictive power of modern machine learning methods.

The machine learning technique they tackled is known as the lasso method, a widely used automated method that ensures models do not get too elaborate. The greatest enemy of predictive analytics (particularly in the “big data” arena) is overfitting, which occurs when a model adheres too closely to a given dataset and becomes less accurate when it is applied to new data; the lasso method helps keep models simpler and more extensible. The problem with the lasso method was that standard significance tests—which help statisticians determine whether a variable is really important or can be thrown out of the model—did not work on it, meaning that it was unable to produce some of the inferential contributions statisticians often demand.

More Read

Tony Barr and the Early History of SAS
The CEO Wants Analytics! Now What?
Text Analytics WIIFM (What’s in it for Me?)
The Data Analytics of the NFL Draft
Mobile Advertising, Clustering Algorithms, and Your Ticket for a Free Ride

Tibshirani and his colleagues developed a special significance test just for the lasso method (the technical details of which can be found here), and have pointed the way to future research into adding inferential capabilities to other predictive modeling techniques. Although this is only the first step, the promise of more insightful algorithmic methods is exciting. In complex environments such as biological and urban systems, the profusion of variables that might be contributing to a particular effect is enormous, and the value of “big data” prediction paired with generalizable inference may be great as well.

TAGGED:end of theory
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?