Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Semantic Business Vocabularies and Rules
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Semantic Business Vocabularies and Rules
AnalyticsBig Data

Semantic Business Vocabularies and Rules

MIKE20
MIKE20
6 Min Read
Image
SHARE

ImageFor many in the traditional applications development community, “semantics” sounds like a perfect candidate for a buzzword tossed at management in an effort to pry fresh funding for what may appear to be academic projects with not much discernible practical payback. Indeed when challenged for examples of “semantic applications” often one hears stumbling litanies about “Linked Open Data”, ubiquitous “URLs” and “statement triples”.

ImageFor many in the traditional applications development community, “semantics” sounds like a perfect candidate for a buzzword tossed at management in an effort to pry fresh funding for what may appear to be academic projects with not much discernible practical payback. Indeed when challenged for examples of “semantic applications” often one hears stumbling litanies about “Linked Open Data”, ubiquitous “URLs” and “statement triples”. Traditional database folks might then retort where’s the beef? because URLs in web applications are certainly just as ubiquitous, are stored in database columns which are named just as “semantic properties” are; are in rows with foreign keys as construable as “subjects” in a standard semantic statement; and that’s still not to mention the many, many other SQL tools in which enterprises have heavily, heavily invested over many, many years! So…

It’s a good question – where IS the beef?

The Object Management Group (OMG), a highly respected standards organization with outsized impacts on many enterprises, has recently released a revision of its Semantics of Business Vocabulary and Rules (SBVR) that provides one clear answer to this important question.

More Read

Workforce Analytics
The Quiet-Eye Period
Customer Data Analytics is Critical to the Future of Account-Based Marketing
Small Businesses Use Big Data to Offset Risk During Economic Uncertainty
Package Update Roundup: Apr 2009

Before we go there, let’s stipulate that for relatively straight-forward (but nonetheless closed world) applications, it’s probably not worth the time nor expense to ‘semanticize’ the application and its associated database. These are applications that have few database tables; that change at a low rate; that have fairly simple forms-based user interfaces, if any; and that are often connected through transaction queues with an enterprise’s complex of applications. For these, fine, exclude them from projects migrating an enterprise to a semantic-processing orientation.

Another genre of applications are those said ‘mission critical’. These applications are characterized by a large number of database tables and consequently a large number of columns and datatypes the application needs to juggle. These applications have moderate to high rates of change to accommodate functional requirements due to shifting (and new additions to) of dynamic enterprises — not so much mission creep as it is the normal response to the tempo of the competitive environments in which enterprises exist.

The fact is that the physical schema for a triples-based (or quad-based) semantic database does not change; the physical schema is static. Rather, it’s the ontology, the logical database schema, that changes to meet new requirements of the enterprise. This is an important outcome of a re-engineered applications development process: this eliminates often costly tasks associated with designing, configuring and deploying physical schema.

Traditionalists might view this shift as mere cleverness, one equally accomplished by tools which transform logical database designs into physical database schema. Personally I don’t have the background to debate the effectiveness of these tools. However, let’s take a larger view, one suggested by the OMG specification for Business Vocabularies and Rules.

Business Policies – where it begins, and will end

Classically business management establishes policies which are sent to an Information Technology department for incorporation to new and existing applications. It is then the job of systems analysts to stare at these goats and translate them into coding specifications for development and testing. Agile and other methodologies help speed this process internally to the IT department, however until the fundamental dynamic between management and IT changes, this cycle remains slow, costly and mistake-prone.

Now this is where OMG’s SBVR applies: it is an ontology for capturing rules such as “If A, then thou shalt not do X when Y or Z applies; otherwise thou shalt do B and C” into a machine-processable form (that is, into semantic statements). Initially suitably trained system analysts draft these statements as well as pertinent queries which are to be performed by applications at the proper moment. However at some point tools will appear that permit management themselves to draft and test the impact of new and changed policies against live databases.

This is real business process re-engineering at its brightest. Policy implementation and operational costs are affected as the same language (a somewhat ‘structured English’) is used to state what should and must be as that used to state what is. Without that common language, enterprises can only rely on the skills of systems analysts to adequately communicate business, and regulatory, requirements to others.

Capturing & weaving unstructured lexical information into enterprise applications, has never been possible with traditional databases. This is why ‘semantics’ is such a big deal.

image: vocabularies/shutterstock

TAGGED:lexical processing
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?