Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Role of Business Intelligence in Process Improvement
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Role of Business Intelligence in Process Improvement
AnalyticsBusiness IntelligencePredictive Analytics

Role of Business Intelligence in Process Improvement

JamesTaylor
JamesTaylor
9 Min Read
SHARE

Bill Gassman spoke on the role of Business Intelligence – BI – in process improvement. Bill means “big BI” – everything to do with intelligence about your business, the discipline of BI and analytics, not just a “BI” product. The road to intelligent operations he says has “haves” and “have nots” – some have BI and BPM automated, monitored and managed but many do not. Some will therefore be able to bring BI and BPM together effectively, some will not – they will struggle to find the data, integrate it, understand it and apply it to their processes.

Bill Gassman spoke on the role of Business Intelligence – BI – in process improvement. Bill means “big BI” – everything to do with intelligence about your business, the discipline of BI and analytics, not just a “BI” product. The road to intelligent operations he says has “haves” and “have nots” – some have BI and BPM automated, monitored and managed but many do not. Some will therefore be able to bring BI and BPM together effectively, some will not – they will struggle to find the data, integrate it, understand it and apply it to their processes. Three things to discuss then – what technologies are converging to build intelligent operations, how are companies using BI to improve processes and what are some of the best practices for doing this?

First, what technologies are converging to build intelligent operations

One of Gartner’s focus areas is pattern based strategies that allow you seek, model and adapt and so deliver agility. This agility is dependent on productivity, awareness, adaptability (reacting to unexpected change) and flexibility (options for expected change). But the first step is an ability to seek and see the changes that are impacting our business – both expected or knowable changes and the real outliers or “black swans”. Agility requires an ability to respond to both. Specific technologies:

More Read

MIT engineers have been working on a mathematical model that can…
Participate in the Analytics Professionals Study
Innovating the Practice of Performance Management
Tests that show machines closing in on human abilities – tech -…
Merging AI With Online Marketing For Explosive Growth
  • Bill talks about operationally focused BI that is a spectrum from historical BI (what happened) to in-progress BI (dashboards and performance monitoring, business activity monitoring) and predictive BI (analytics really like data mining and predictive analytics).
  • Event processing is another relevant technology in Bill’s taxonomy. Obviously as the number of sensors grows plus the growth in event generating processes the number of events expands dramatically. Making sense of all these events is valuable and drives demand for event correlation engines that can generate more complex (business) events, kick off processes or call decision services.
  • High performance operational queries – an ability to do complex queries against operational data quickly – is essential and is something that is being addressed by a new wave of analytic technologies (sometimes labeled Big Data technologies) including in-memory databases and in-database analytics.
  • Operational visualization is also a growing topic with the ability to rapidly visualize large amounts of data in a real-time enough way to be useful in operations. Of course I would say that if you really want to respond to data in real-time, showing it to someone cannot work as people just aren’t reliable as a real-time component because phones ring, bathroom breaks are essential etc.
  • Bill drew a distinction between BI within a process and BI about a process. BI within a process is about improving decisions, adding understanding and determining more appropriate actions. Embedding a decision in the process explicitly rather than just displaying an “approve/deny” step and hoping that they understand the decision. Classic description of Decision Management – make the decision and its rules explicit so you can apply analytics and continually improve. This is different, of course, from using BI about a process to see how the process is going and look for ways to improve the process.

How are companies using BI to improve processes?

Analytics are everywhere in logistics, transportation, customer contact, websites, fraud detection and more. But many companies have an uncoordinated analytics approach because the applications they buy (or build) have analytics embedded that are separate and not linked. He also pointed out that situation awareness means more than a dashboard, it means a decision support environment with collaboration, events, deviation from forecast, risk factors and more.

Bill sees a maturity curve :

  1. Live dashboards but no action taking – an airplane map
  2. Real time console but human decision makers – a manual cockpit
  3. Prescriptive advice – a proximity alarm say
  4. Autopilot feedback loops – business rules controlling decisions so the system can (mostly) fly itself
  5. Autonomous – simply telling the system what your goals are and letting it manage the behavior

Examples of intelligent operations include recommendation or ad engines especially online, call center operations, supply chain logistics, airline operations, casinos like Harrahs and public venues like Disneyland. While real-time visualization, monitoring and event handling are critical to the various scenarios described, none of them work unless some of the systems involved are able to make decisions on users’ behalf – there often isn’t time to ask a person to make the decision.

Technologies are evolving as mega vendors acquire BPM and everyone with a BPM product acquires BI or analytic technologies – IBM with SPSS/Cognos/Coremetrics, Oracle acquiring Siebel/Hyperion, SAP acquired BusinessObjects, Tibco acquired Spotfire. Interestingly all of them also have business rules management systems. The stacks are not integrating all that rapidly, however, so short term projects may need to take a “best of breed” approach and/or some custom development.

What are some of the best practices for doing this?

  • Build a business case based on the value of reduced delay, improved risk tolerance/management, new opportunities. Offset this value with technology costs, infrastructure, governance, organization change/acceptance (sharing information can be culturally difficult) and failures. Remember to describe where it will be used, who will be benefiting, how will things change and how will you measure the value of the solution. Remember, though, you can (and should) start small
  • Network competency centers – make sure the BPM, Application Development and BI competency centers collaborate.
  • Collaborate on metrics across the functional groups impacted so that there is a shared view of how success will be measured
  • Adopt pattern based strategies – gather information to discover new patterns, model solutions and deploy a monitoring system based on the model to spot the patterns and do something about it (tell someone or have the system do something using Decision Management) while keeping a continuous improvement loop going.

To put it all together you need to seek new patterns in your data and event streams, analyze this using BI and analytic tools, model your decisions (my words) using business rules, define your responses as business processes and maintain a continuous improvement loop.

Recommendations:

  • Combine CEP, BI and BPM to develop intelligent operations
  • Smart small but start now as the cultural learning curve is steep regardless of products
  • Define monitoring points, metrics and triggers when designing processes – put the decisions explicitly into your processes I would say
  • Address governance through collaborating competency centers
  • Measure and market the benefits of adding intelligent to business and IT operations
Previous in series
Copyright © 2011 http://jtonedm.com James Taylor

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Data Presentation: A Picture is Worth Far More Than Words

3 Min Read

Words at Work: Defining “Business Analytics”

4 Min Read

How To Become A Data-Driven Company

4 Min Read
AI solutions in payroll
Artificial IntelligenceExclusive

AI Leads To A New Era Of Single Touch Payroll Solutions

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?