Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Relational DB Pros: The Times They Are A-Changin’
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Relational DB Pros: The Times They Are A-Changin’
Big DataData ManagementData WarehousingModeling

Relational DB Pros: The Times They Are A-Changin’

boblambert12
boblambert12
7 Min Read
SHARE

Recently I read a thoughtful post at the PASS Business Analytics Conference site discussing how different the world is now for database professionals. Author Chris Webb focuses on the data science side in this post. His analysis made me think of the challenges and opportunities “big data” serves up to relational database designers.

Contents
The Data ElementInherent Data StructureDemise of the Relational Dream?Next Steps for the Database Professional

To me these challenges are fundamental. Big Data and NoSQL bring lots of what we know about data elements, inherent data design, and data management into question. I think considering these elements closely leads to a sensible to-do list for relational database professionals.

Recently I read a thoughtful post at the PASS Business Analytics Conference site discussing how different the world is now for database professionals. Author Chris Webb focuses on the data science side in this post. His analysis made me think of the challenges and opportunities “big data” serves up to relational database designers.

To me these challenges are fundamental. Big Data and NoSQL bring lots of what we know about data elements, inherent data design, and data management into question. I think considering these elements closely leads to a sensible to-do list for relational database professionals.

More Read

Australian National Broadband Roll Out
Integrating Big Data and More with Your Data Warehouse
Using Sales Intelligence to Boost Revenue
Benefits of Using Metal Laser Marking and Big Data Together
New SIEM Alternative Offers Excellent Data Security Features

The Data Element

One foundational relational idea is that data sets comprise discrete, atomic units of data. Data elements are not tied together in any way, two data elements may be best held in separate tables but nothing says they have to be. A data element is atomic in that it is indivisible and cannot be subdivided into parts – otherwise it is “overloaded” and therefore not truly a data element.

Many NoSQL proponents have no such scruples about atomicity.  Note this excellent presentation by Eric Redmond.  At about 19:40 he discusses column-oriented data stores, giving maintaining a wiki as an example. The cells shown can contain complex data forms.  For example, “revision” includes at least Author and Comment. Clearly the rows and columns given in this example are quite different from relational rows and columns.

Inherent Data Structure

Another widely held premise of the relational data community is that data has a correct structure, inherent to the data itself, within context of a given business rules set. Databases should be designed according to that correct normalized structure, or at least a structure simply derivable from the normalized model. The alternative is to risk “anomalies” that force additional application code to prevent database inconsistencies that would have been avoidable in the normalized structure.

NoSQL advocates view this “design first” philosophy as an expensive and unnecessary luxury. As I’ve written in a previous post, the approach to working with Big Data seems to take a contrarian view from the perspective of the relational designer:

  • “Data duplication and denormalization are first-class citizens.” (here)
  • NoSQL databases “don’t have a fixed schema, allowing you to store any data in any record” (here)
  • NoSQL data modeling often starts from the application-specific queries as opposed to relational modeling (here)

So for the NoSQL database designer the problem to be solved comes first, rather than the structure of the data itself.

Demise of the Relational Dream?

Since the beginning, the database community has shared a vision that all enterprise data elements would be integrated into a single database structure and accessible without duplication for any business purpose. For example, a widely used 1977 textbook cited “Elimination of Data Duplication” as a key advantage of database processing.*

Early database management systems failed to deliver on that promise, giving rise to Bill Inmon’s data warehouse architecture. Inmon’s vision aims to deliver data sharing through architecturally correct replication. Later developments like the Service Oriented Architecture (SOA) and Ralph Kimball’s dimensional paradigm adjusted but fit within the mental map that Mr. Inmon conceived. One could argue persuasively that no organization has come close to delivering on the data sharing vision, but the vision has persisted nonetheless. 

That is, until now. By adding unstructured, high volume, and high velocity data to the mix, the Big Data/NoSQL movement has effectively nullified the shared data vision without replacing it. Page 8 of Martin Fowler and Pramod Sadalage’s introductory NoSQL presentation offers a vision of Polyglot Persistence in an organization, showing coexistence of many different database paradigms for different business needs. To the seasoned relational database professional that diagram also shows data silos. The spiderweb pattern of data transfer among many independent data stores was a motivation for data sharing architectures.

Next Steps for the Database Professional

So to sum up, the NoSQL movement has rendered the data element obsolete, turned database design from an enterprise concern to an application-specific problem, and nullified the 35 year old dream of universal enterprise data sharing. Pretty depressing, right?

Not at all. I think we in the relational database world have an invigorating task list as NoSQL offerings grow to maturity in our organizations. As with any change process, step one is acknowledgment and acceptance: NoSQL is here. At some point your organization will face a business case that obviously calls for a non-relational database solution. This has likely already happened if you’re in a Fortune 1000 company.

Step two is learning. As we’ve discussed, NoSQL is different, and will be as much of a transition for SQL professionals as the transition from CODASYL databases to relational was for programmer/analysts of the 1980s.

Step three, after understanding and embracing NoSQL, is to continue where we’ve left off. While data sharing in the relational sense may have been naive, the need for enterprise data governance and architecture, data quality efforts, and effective business intelligence don’t go away with NoSQL, they just become more complex. It is time to enhance, and maybe revolutionize, our conceptual vision to encompass vast stores of unstructured data stored in unpredictable ways.  

 

*Kroenke, David. Database Processing: Fundamentals, Modeling, Applications. Science Research Associates, Inc., 1977. p 5.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Interview :Doug Savage ,Creator SavageChickens.com

7 Min Read
big data in retail
Big Data

Investing in Data Solutions To Streamline Your Retail Business

9 Min Read

Building A Smart Workplace For Post-Millennials

6 Min Read

A video introduction to R for Excel users

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?