Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Practical Data Analytics – When is “close enough” good enough?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Practical Data Analytics – When is “close enough” good enough?
Business Intelligence

Practical Data Analytics – When is “close enough” good enough?

Brett Stupakevich
Brett Stupakevich
3 Min Read
SHARE

amazing girl quits 1 300x199 photo (data analytics)

amazing girl quits 1 300x199 photo (data analytics)

Data analytics isn’t always about getting the right answer – it’s often about getting useful answers that help make the best decisions. There are many instances where the right answer doesn’t even exist. An example is if we’re using social data or a predictive model.  So how do we know when “close enough” is good enough?

More Read

Apple Introduces Revolutionary New Laptop With No Keyboard | The…
Recipes for success?
The Three Threes of BI Dashboards
The ‘Big Data’ Buzz – Revolution or Evolution?
Can We Actually Confront Data Quality With Business Intelligence?

Let’s say you are using data analytics to help prevent undesirable turnover of high potential employees in your organization. You have a model that predicts which high potential employees will quit next. So, the idea is to alert management so they can intervene.  In this case, there is no right answer – until someone quits, and then it’s too late. The model provides an indication along some continuum of the likeliness to quit.  You will draw a line on that continuum and intervene for every employee who falls above the line.  Hopefully you have the model inputs and an understanding of how the model works.

If the answer from the model is low, medium or high, is that “close enough” to help you decide where to place the line? What if the model produces a whole number from 0 to 10? Can you make a decision about where to intervene?  What if it provides half-steps (8.5, 9.0, 9.5)? What about tenths (8.1, 8.2, 8.3)? Hundredths (8.01`, 8.02, 8.03)? Pretty soon you’ll reach a point where an increase in precision doesn’t really affect your decision, and you’ve found your definition of “good enough”.

If the model doesn’t provide acceptable precision, you can assess the cost of increasing precision against the cost and consequence of intervening unnecessarily. Once you get acceptable precision, where you place the line will be a balance between your tolerance for risk (someone quits without intervention) and the cost and consequence of intervening unnecessarily.

As with any kind of change management, your success will be heavily influenced by the way you communicate this to others. If you think some users won’t find the results “good enough”, you should manage their expectations and either discuss the process you’ll take to improve the results, or discuss the economics of why improving the results will cost more than the problem is worth. In either case, it’s more likely that a bad decision will be due to a lack of understanding than a lack of information.

Steve McDonnell
Spotfire Blogging Team

Image Credit:  thechive.com

TAGGED:data analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in business
Recurring Revenue Strategies for the AI Business Era
Artificial Intelligence Exclusive
ai for playground safety
Using Data to Plan Safer, More Efficient Public Playgrounds
Big Data Exclusive
AI for cybersecurity
How AI Supports Modern Penetration Testing
Artificial Intelligence Exclusive
ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

data analytics use in marketing
Analytics

5 Ways Data Analytics Sets a New Standard for Revenue Marketing

6 Min Read
Self-service statistical computing is a growth industry in 2013.
Analytics

What Makes Self-Service Statistical Computing Tools So Important?

4 Min Read
Analytics

5 Ways To Improve Your Business Skills with Data Analytics

11 Min Read
business intelligence lessons from Brexit
Business IntelligenceBusiness RulesExclusive

6 Valuable Business Intelligence Lessons From Brexit

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?