Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Practical Data Analytics – When is “close enough” good enough?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Practical Data Analytics – When is “close enough” good enough?
Business Intelligence

Practical Data Analytics – When is “close enough” good enough?

Brett Stupakevich
Brett Stupakevich
3 Min Read
SHARE

amazing girl quits 1 300x199 photo (data analytics)

amazing girl quits 1 300x199 photo (data analytics)

Data analytics isn’t always about getting the right answer – it’s often about getting useful answers that help make the best decisions. There are many instances where the right answer doesn’t even exist. An example is if we’re using social data or a predictive model.  So how do we know when “close enough” is good enough?

More Read

Why Strategy Needs to Be Specific…
First Look – KXEN
Decision Management, Big Data and McKinsey
How Assistive AI Decreases Damage During Natural Disasters
Collaborative BI – Share Your Insights

Let’s say you are using data analytics to help prevent undesirable turnover of high potential employees in your organization. You have a model that predicts which high potential employees will quit next. So, the idea is to alert management so they can intervene.  In this case, there is no right answer – until someone quits, and then it’s too late. The model provides an indication along some continuum of the likeliness to quit.  You will draw a line on that continuum and intervene for every employee who falls above the line.  Hopefully you have the model inputs and an understanding of how the model works.

If the answer from the model is low, medium or high, is that “close enough” to help you decide where to place the line? What if the model produces a whole number from 0 to 10? Can you make a decision about where to intervene?  What if it provides half-steps (8.5, 9.0, 9.5)? What about tenths (8.1, 8.2, 8.3)? Hundredths (8.01`, 8.02, 8.03)? Pretty soon you’ll reach a point where an increase in precision doesn’t really affect your decision, and you’ve found your definition of “good enough”.

If the model doesn’t provide acceptable precision, you can assess the cost of increasing precision against the cost and consequence of intervening unnecessarily. Once you get acceptable precision, where you place the line will be a balance between your tolerance for risk (someone quits without intervention) and the cost and consequence of intervening unnecessarily.

As with any kind of change management, your success will be heavily influenced by the way you communicate this to others. If you think some users won’t find the results “good enough”, you should manage their expectations and either discuss the process you’ll take to improve the results, or discuss the economics of why improving the results will cost more than the problem is worth. In either case, it’s more likely that a bad decision will be due to a lack of understanding than a lack of information.

Steve McDonnell
Spotfire Blogging Team

Image Credit:  thechive.com

TAGGED:data analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

embedding business intelligence into software
Business IntelligenceExclusiveSoftware

5 Questions To Ask Before Embedding Business Intelligence Into Software

7 Min Read
digital marketing training data analytics
Analytics

Data Analytics Is Vital To Digital Marketing Training During Pandemic

6 Min Read
Self-service statistical computing is a growth industry in 2013.
Analytics

What Makes Self-Service Statistical Computing Tools So Important?

4 Min Read
company's data analytics
Analytics

Navigating the Arcane Art and Delicate Science of Analytics

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?