Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Perils of Forecasting Benchmarks
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > The Perils of Forecasting Benchmarks
Best PracticesPredictive Analytics

The Perils of Forecasting Benchmarks

mvgilliland
mvgilliland
3 Min Read
SHARE

Benchmarks of forecasting performance are available from several sources, including professional organizations and journals, academic research, and private consulting/benchmarking organizations. But there are several reasons why industry forecasting benchmarks should not be used for setting your own forecasting performance objectives.

1) Can you trust the data?

Benchmarks of forecasting performance are available from several sources, including professional organizations and journals, academic research, and private consulting/benchmarking organizations. But there are several reasons why industry forecasting benchmarks should not be used for setting your own forecasting performance objectives.

More Read

Forecasting Lessons from Heathrow’s Snowpocalypse
DM Radio: EDW Mistakes to Avoid
Top 10 Data Management Issues for 2009
Musings on Watson: Why Healthcare?
The Agile Agency: creating the best conditions for awesome

1) Can you trust the data?

Are the numbers based on rigorous audits of company data or responses to a survey? If they are based on unaudited survey responses, do the respondents actually know the answers or are they just guessing?

2) Is measurement consistent across the respondents?

Are all organizations forecasting at the same level of granularity, such as by product, customer or region? Are they forecasting in the same time interval, such as weekly or monthly? Are they forecasting by the same lead time offset, such as three weeks or three months in advance? Are they using the same metric? It is important to note that even metrics as similar sounding as MAPE, weighted MAPE, and symmetric MAPE can deliver very different values from the same data.

3) Finally, and most important, is the comparison relevant?

Does the benchmark company have equally forecastable data?

Consider this worst-case example:

Suppose a benchmark study shows that Company X has the lowest forecast error. Consultants and academics then converge on Company X to study its forecasting process and publish reports touting Company X’s best practices. You read these reports and begin to copy Company X’s best practices at your own organization.

However, upon further review using FVA analysis, it is discovered that Company X had very easy-to-forecast demand, and it would have had even lower error if it had just used a naive forecast. In other words, Company X’s so-called best practices just made the forecast worse.

This example is not far-fetched. Organizations at the top of the benchmark lists are probably there because they have the easiest-to-forecast demand. Many organizational practices, even purported best practices, may only make the forecast worse.

Benchmarks tell you the accuracy that best-in-class companies are able to achieve. But…they do not tell you whether their forecasting environment is similar to yours or worthy of your admiration. Without that information, industry benchmarks are largely irrelevant and should not be used to evaluate your performance or set performance objectives.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Predicting the future … in four parts

2 Min Read
data security risks
Data Management

Data Loss: Hazards, Risks and Strategies for Prevention

10 Min Read

Reminder: DSC 2009 abstract submissions due March 15

0 Min Read

Customer Churn and Retention

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?