Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Overlooked Key to Enterprise-Scale Internet of Things Adoption
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Exclusive > The Overlooked Key to Enterprise-Scale Internet of Things Adoption
ExclusiveInternet of Things

The Overlooked Key to Enterprise-Scale Internet of Things Adoption

Comly Wilson
Comly Wilson
7 Min Read
Enterprise Scale Internet of Things Adoption
Shutterstock Licensed Photo - By one photo
SHARE

While consumer Internet of Things (IoT) devices have drawn most of the press attention, it is the enterprise-scale Internet of Things adoption that is arguably having a larger impact. Focused on the critical infrastructure of the buildings and cities in which we inhabit, this technology is quietly revolutionizing real estate, the largest asset class in the world.

Contents
How to Implement a Wireless Networking InfrastructureComponents1) The Nodes2) Wireless Communications3) Gateway(s)ConsiderationsLooking ForwardWrapping Things Up

Deloitte Insights expects 1.3 billion IoT devices to be deployed in commercial real estate by 2020. These IoT predictions are powerful. The falling cost of IoT sensors and data storage have been well documented, but the scale of these deployments necessitates a wireless infrastructure that is largely nonexistent in the industry.

To be fair, IoT predictions around the idea of using sensors to collect granular data to drive automation and decision making is not new to commercial real estate. For decades, this technology has been delivered in the form of “Building Management Systems,” usually hosted on closed building intranets. However, these systems can cost millions of dollars to implement, so deployments have been limited to only the most high-end buildings.

The Internet of Things impact can help deliver the same benefits to occupant experience, equipment reliability, and energy efficiency, but at a fraction of the cost.

More Read

writing paper data
Harnessing Big Data To Write A Fantastic Research Paper
3 Ways Big Data Can Help With Native Ad Campaigns
6 Tremendous Benefits of Big Data for Financial Management
Data Driven Links Between Workplace Productivity and Screening Checks
Understanding the Cybersecurity Implications of Daily Social Media Use

However, before specific applications can be considered, the wireless networking infrastructure must be designed and executed to provide scalability, reliability, and flexibility.

Because enterprise-scale deployments cover a wide area and must be transmitted through many layers of walls and ceilings, the importance of this step is often underestimated.

How to Implement a Wireless Networking Infrastructure

Components

1) The Nodes

This is the actual device collecting data (eg. electrical meter, moisture/water sensor, air quality sensor, etc.) The capabilities of the device determine the next step: the type of wireless network interface.

In some cases, IoT devices support a wireless communication interface themselves; however, more often the device communicates in one or more protocols (Modbus TCP/RTU, Bacnet, Pulse), which are traditionally wire-based. To make devices communicate wirelessly, additional hardware is required.

2) Wireless Communications

Devices that enable wireless communications either attach to a node or act as an access point, station, or repeater. The optimal configuration will depend on the length of the transmission and the layout of the building. There are several options available today. The most popular are WiFi (2.4Ghz/ 5Ghz), Cellular (3G/4G), and one of the many protocols on the sub-GHz (433 MHz/ 868 MHz/ 900 MHz).

The desired frequency is determined by the length of the transmission and bandwidth required. The lower the frequency, the better the penetration between walls, floors, etc. The higher the frequency, the more bandwidth you have within your network.

3) Gateway(s)

Ideally, there is one gateway, but because there are so many IoT devices, there is often a mix of nodes with different communication protocols, leading to multiple wireless interfaces, and operating on multiple frequencies.

The gateway often has two jobs: to act as the medium to communicate with the cloud and as a totalizer to aggregate all data from many nodes.

Considerations

Knowing what you want is very important when designing the wireless device and gateway infrastructure.

Before deployment, it’s important to ask yourself a series of questions: How critical is this data? What happens if one or more components fail, and how does that affect the rest of the nodes? Can these nodes store offline data? If so, for how long, and is this site local or remote? Is there someone at the location who can troubleshoot? If not, when can I send someone to diagnose this issue and how much will that cost?

There are also several technical considerations when deploying the Internet of Things at the enterprise-scale. These include bandwidth requirements, number of end nodes, time interval desired, and the types of data. For example, when measuring electrical consumption for a large piece of equipment. Do you need one reading type, such as kilowatts, or multiple including voltage, current, and power factor?

Looking Forward

Low Power Wide Area Network (LPWAN) is growing in popularity. These networks are especially useful for nodes that operate on low power (such as with batteries) but can also be used for nodes that have a dedicated power source (eg. meters).

In theory, this network will consolidate hundreds or thousands of nodes through a few LPWAN devices spread across the building.

But there is currently an issue with bandwidth. LPWAN is great if you are sending one or two reading types at a given time interval; however, most LPWAN networks limit the number of data packets.

Wrapping Things Up

What’s great about the IoT is its affordability, and the strategic way sensors can be used to make smart buildings and smart cities. The catch is how tough it can be to make sure that wireless networking infrastructure is in place to support this IoT data collection and the amount of data they transmit. That said, the impact of the Internet of Things remains powerful.

The goal is to create an infrastructure that can be replicated across a portfolio, that is reliable and efficient in transmitting data, and that is flexible enough to support many data types. Fortunately, once a wireless networking infrastructure is in place, the cost of the sensors and configuring them with a software platform is minimal. Get this right, and the sky is the limit.

TAGGED:internet of thingsInternet of things adoptionIoTIoT in real estate
Share This Article
Facebook Pinterest LinkedIn
Share
ByComly Wilson
Follow:
Comly writes for the Enertiv Blog. The company uses big data and machine learning to identify anomalies in building operations and deliver insights around energy consumption, maintenance, and indoor environmental conditions.

Follow us on Facebook

Latest News

big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive
sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

smart data IoT
Big DataBusiness IntelligenceInternet of Things

7 Ways Smart Data Can Reduce Business Costs

8 Min Read
machine learning and AI
Artificial IntelligenceMachine Learning

The Rise of Machine Learning and AI is Improving Lives in 2018

8 Min Read
IoT Security
Internet of Things

IoT Security: What Kind of Data Is Compromised by Poorly Protected IoT Devices?

6 Min Read
Internet of Things systems
Internet of Things

How to Make Sure Your IoT Systems Stay Compliant

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?