Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Outlier Detection in Two Review Articles (Part 1)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Outlier Detection in Two Review Articles (Part 1)
Analytics

Outlier Detection in Two Review Articles (Part 1)

SandroSaitta
SandroSaitta
3 Min Read
SHARE

If you need to read two review articles about outlier detection, the first one is…

Outlier Detection: A Survey

The first one, Outlier Detection: A Survey, is written by Chandola, Banerjee and Kumar. They define outlier detection as the problem of “[…] finding patterns in data that do not conform to expected normal behavior“. After an introduction to what outliers are, authors present current challenges in this field. In my experience, non-availability of labeled data is a major one.

More Read

Why Will Analytics Be the Next Competitive Edge?
7 Questions Every Data Scientist Should Be Answering for Business
Fill in the blanks: Which X is Most Likely to X?
Medicare Cost Analysis – Guest Radio Appearance to Explore Data-Driven Insights
Super Bowl 12: It’s All Over But For Measuring the Impact of The Shouting

If you need to read two review articles about outlier detection, the first one is…

Outlier Detection: A Survey

The first one, Outlier Detection: A Survey, is written by Chandola, Banerjee and Kumar. They define outlier detection as the problem of “[…] finding patterns in data that do not conform to expected normal behavior“. After an introduction to what outliers are, authors present current challenges in this field. In my experience, non-availability of labeled data is a major one.

The authors proposes three types of supervisions. In supervised outlier detection we make the assumption that labeled data are available. Semi-supervised outlier detection assumes that only one class of labeled data is available. Techniques which models normal instances as the only class are more popular (since normal instances are easier to obtain). The third approach, unsupervised outlier detection, is the most widely used one. The paper continues by describing three types of outliers. Authors then describes several applications of outliers detection in areas such as intrusion detection, fraud detection, industrial damage detection, image processing, etc.

Techniques used for outlier detection are then described. It is surprising to read that most data mining techniques can be applied to the task of outlier detection. For example: neural networks, SVM, rule-based, clustering, nearest neighbors, regression, etc. The articles continues with several other techniques. Authors also describe ways to evaluate results of outlier detection with false positive, false negative and ROC curve. To be noted the 19 pages (!) of references to other articles in the field. One of their main conclusions is that “[…] outlier detection is not a well-formulated problem“. It is your job, as a data miner, to formulate it correctly.

Link to Outlier Detection: A Survey

Share/Bookmark


Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data analytics for smart devices
AnalyticsBig Data

Big Data, Big Difference: Building Smarter Devices with Data Analytics

7 Min Read
secrets to boosting customer loyalty
AnalyticsExclusivePredictive Analytics

Predictive Analytics Reveals Secrets To Boosting Customer Loyalty

9 Min Read
Image
AnalyticsBusiness IntelligenceData VisualizationHadoopSentiment Analytics

Big Data Bubbles Up Trouble!

3 Min Read

Analytics-based Presidential Campaigns

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?