By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Outlier Analysis: Chebyschev Criteria vs Approach Based on Mutual Information
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Outlier Analysis: Chebyschev Criteria vs Approach Based on Mutual Information
Analytics

Outlier Analysis: Chebyschev Criteria vs Approach Based on Mutual Information

cristian mesiano
Last updated: 2012/05/24 at 9:20 AM
cristian mesiano
3 Min Read
SHARE
As often happens, I usually do many thing in the same time, so during a break while I was working for a new post on applications of mutual information in data mining, I read the interesting paper suggested by Sandro Saitta on his blog (dataminingblog)  related to the outlier detection. 

…Usually such behavior is not proficient to obtain good results, but this time I think that the change of prospective has been positive!

As often happens, I usually do many thing in the same time, so during a break while I was working for a new post on applications of mutual information in data mining, I read the interesting paper suggested by Sandro Saitta on his blog (dataminingblog)  related to the outlier detection. 

…Usually such behavior is not proficient to obtain good results, but this time I think that the change of prospective has been positive!


Chebyshev Theorem
In many real scenarios (under certain conditions) the Chebyshev Theorem provides a powerful algorithm to detect outliers.
The method is really easy to implement and it is based on the distance of Zeta-score values from k standard deviation.
…Surfing on internet you can find several explanations and theoretical explanation of this pillar of the Descriptive Statistic, so I don’t want increase the Universe Entropy explaining once again something already available and better explained everywhere 🙂


Approach based on Mutual Information
Before I explain my approach I have to say that I have not had time to check in literature if this method has been already implemented (please drop a comment if someone finds out a reference! … I don’t want take improperly credits).
The aim of the method is to remove iteratively the sorted Z-Scores till the mutual information between the Z-Scores and the candidates outlier I(Z|outlier) increases.
At each step the candidate outlier is the Z-score having the highest absolute value.

Basically, respect the Chebyschev method, there is no pre-fixed threshold.

Experiments
I compared the two methods through canonical distribution, and at a glance it seems that results are quite good.

More Read

data-driven white label SEO

Does Data Mining Really Help with White Label SEO?

IT Hardware Startups Turn to Data Analytics for Market Research
The Power of Big Data and Analytics in Digital Signage
Data Analytics Boosts ROI of Investment Trusts
Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
Test on Normal Distribution

As you can see in the above experiment the Mutual information criteria seems more performant in the outlier detection.

Test on Normal Distribution having higher variance

The following experiments have been done with Gamma Distribution and Negative Exponential

Results on Gamma seem comparable.

Experiment done using Negative Exponential distribution

…In the next days I’m going to test the procedure on data having multimodal distribution.
Stay Tuned
Cristian


cristian mesiano May 24, 2012
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data and IP laws
Big Data & AI In Collision Course With IP Laws – A Complete Guide
Big Data
ai in marketing
4 Ways AI Can Enhance Your Marketing Strategies
Marketing
sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data-driven white label SEO
Analytics

Does Data Mining Really Help with White Label SEO?

7 Min Read
marketing analytics for hardware vendors
Analytics

IT Hardware Startups Turn to Data Analytics for Market Research

9 Min Read
big data and digital signage
Analytics

The Power of Big Data and Analytics in Digital Signage

5 Min Read
data analytics investing
Analytics

Data Analytics Boosts ROI of Investment Trusts

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?