Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Outlier Analysis: Chebyschev Criteria vs Approach Based on Mutual Information
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Outlier Analysis: Chebyschev Criteria vs Approach Based on Mutual Information
Analytics

Outlier Analysis: Chebyschev Criteria vs Approach Based on Mutual Information

cristian mesiano
cristian mesiano
3 Min Read
SHARE
As often happens, I usually do many thing in the same time, so during a break while I was working for a new post on applications of mutual information in data mining, I read the interesting paper suggested by Sandro Saitta on his blog (dataminingblog)  related to the outlier detection. 

…Usually such behavior is not proficient to obtain good results, but this time I think that the change of prospective has been positive!

As often happens, I usually do many thing in the same time, so during a break while I was working for a new post on applications of mutual information in data mining, I read the interesting paper suggested by Sandro Saitta on his blog (dataminingblog)  related to the outlier detection. 

…Usually such behavior is not proficient to obtain good results, but this time I think that the change of prospective has been positive!


Chebyshev Theorem
In many real scenarios (under certain conditions) the Chebyshev Theorem provides a powerful algorithm to detect outliers.
The method is really easy to implement and it is based on the distance of Zeta-score values from k standard deviation.
…Surfing on internet you can find several explanations and theoretical explanation of this pillar of the Descriptive Statistic, so I don’t want increase the Universe Entropy explaining once again something already available and better explained everywhere 🙂


Approach based on Mutual Information
Before I explain my approach I have to say that I have not had time to check in literature if this method has been already implemented (please drop a comment if someone finds out a reference! … I don’t want take improperly credits).
The aim of the method is to remove iteratively the sorted Z-Scores till the mutual information between the Z-Scores and the candidates outlier I(Z|outlier) increases.
At each step the candidate outlier is the Z-score having the highest absolute value.

Basically, respect the Chebyschev method, there is no pre-fixed threshold.

Experiments
I compared the two methods through canonical distribution, and at a glance it seems that results are quite good.

More Read

#13: Here’s a thought…
Self-Promoters Score! Why Analysts Can’t be Shy Anymore
HTML5 and The Semantic Web
Agent-based computer models could anticipate future economic crisis
Eli Lilly’s Dave Powers talks compellingly about how the…
Test on Normal Distribution

As you can see in the above experiment the Mutual information criteria seems more performant in the outlier detection.

Test on Normal Distribution having higher variance

The following experiments have been done with Gamma Distribution and Negative Exponential

Results on Gamma seem comparable.

Experiment done using Negative Exponential distribution

…In the next days I’m going to test the procedure on data having multimodal distribution.
Stay Tuned
Cristian


Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

The Next Generation BI Professional – Things Will Be Very Different

6 Min Read

Windows Server on Amazon EC2

2 Min Read

Internet Topology: Massive and Amazing Graphs

1 Min Read

First Look – SPSS Predictive Analytic Software 13

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?