By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: 5 Steps to Setting your Big Data Goals
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > 5 Steps to Setting your Big Data Goals
AnalyticsData MiningHadoopPredictive Analytics

5 Steps to Setting your Big Data Goals

Joshua Polsky
Last updated: 2013/07/24 at 8:00 AM
Joshua Polsky
5 Min Read
Image
SHARE

ImageWe all have goals, or at least should.

ImageWe all have goals, or at least should. I’m reminded of a t-shirt that says, “If you don’t have goals, you’ll never score.” Meaning, if you don’t realize and set goals, you won’t get the desired outcome.In the context of Big Data, over half of projects started are never completed, and can even have very bad results.  

Having done both Big Data as well as BI projects before, we’ve learned not only what to do, but what not to do. If we could help even one person out there with this advice, it would make us all warm and fuzzy.

1) Your initiative needs a sponsor. Likely a C level employee within the organization that knows what value needs to come from the project. This person will take ownership of the project, and will be held accountable for failures and setbacks. He or she will check progress and milestones as well as address potential and actual blockers. It’s important that there is only one person overseeing the project, so that there aren’t instructions coming from various sources, resulting in people being pulled in different directions. On a positive note, the team members involved will know that they have one person to turn to, and that person is there with only one thing in mind, a clear vision of the outcome. Please note that this doesn’t mean there shouldn’t be other managers assisting, but everyone involved should be on the same page.   

More Read

data science anayst

Growing Demand for Data Science & Data Analyst Roles

Predictive Analytics Helps New Dropshipping Businesses Thrive
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
Analytics Changes the Calculus of Business Tax Compliance
Data Mining Technology Helps Online Brands Optimize Their Branding

2) Define your business questions. Business questions are crucial to discovering what business problems exist, so they can be understood and solved for the betterment of the company. What do you want to know? Maybe you want to know which of your campaigns worked the best based on user acquisition rate by geography and/or time of day. Perhaps you want to know how to reduce product shrinkage or optimize your warehouse layout.  If you’re an ecommerce, it would be good to know the revenue at a product level as well as average customer support calls/chat/tickets for a specific time frame.  

3) Start small. Don’t bite off more than you can chew. Focus on the most important questions first. This is not easy because you probably feel, and rightfully so, that all questions are important. They are, but which is most pertinent to the project is what needs to be targeted at this juncture. Questions will evolve and new ones will be added. Stay focused, and handle them at a later stage.

4) Invest in understanding the data. Where is it? Which data is coming from where? The best way to handle this is the process of data profiling. Also, expect schema changes and plan for your system to be able to handle those changes. If you can identify the problem areas at the beginning, it will be less difficult and take less time to handle them up front as opposed to once the system is built. Lastly with your data, expect data corruption and just bad data in general. Again, plan for this up front, it will save headaches in the long run.  

5) Get an expert or two. You’ll need a technical expert that knows the ins and outs of the platform and how it is to be built. If your technical expert isn’t well versed in the business side of the company, get someone that does.  He or she should know every aspect of the business model, the finances, the products and/or services, and how it is all tied together.  

This process will not be easy, but it will make going forward easier than if you did not undertake it at all. 

original post

Joshua Polsky July 24, 2013
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data science anayst
Data Science

Growing Demand for Data Science & Data Analyst Roles

6 Min Read
predictive analytics in dropshipping
Predictive Analytics

Predictive Analytics Helps New Dropshipping Businesses Thrive

12 Min Read
data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read
analytics for tax compliance
Analytics

Analytics Changes the Calculus of Business Tax Compliance

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?