Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Mixed-Effects Models in R with Quantum Forest
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Mixed-Effects Models in R with Quantum Forest
ModelingStatistics

Mixed-Effects Models in R with Quantum Forest

DavidMSmith
DavidMSmith
4 Min Read
SHARE

For anyone who wants to estimate linear or nonlinear mixed-effects models (aka random-effects models, hierarchical models or multilevel models) using the R language, the Quantum Forest blog has several recent posts that will be of interest. Written by Luis Apiolaza from the School of Forest

For anyone who wants to estimate linear or nonlinear mixed-effects models (aka random-effects models, hierarchical models or multilevel models) using the R language, the Quantum Forest blog has several recent posts that will be of interest. Written by Luis Apiolaza from the School of Forestry at the University of Canterbury in New Zealand, the blog includes a number of illustrated examples of using the open-source lme4 package and the proprietary asreml-r package. 

Recent posts include an overview of linear mixed models in R, and worked examples of analyzing forestry yields using a family model and visualizing correlations (using the lattice and ggplot2 packages) — and it’s well worth browsing the archives for many other interesting posts about mixed-effects modeling. (By the way, if you’re looking even more in-depth resources, the 2009 edition of book Mixed-Effects Modeling in S and S-PLUS is, despite the name, the best reference for using the lme4 package in R. Draft chapters from the forthcoming book lme4: Mixed Effects Modeling in R are also available online. If you have ASReml, Dr Apiolaza’s asreml-r cookbook is a handy supplement to the standard documentation.)

The Quantum Forest blog also has several posts on more general R-related topics as will, such as how to find the solution to general maximum likelihood problems in R, and how to simulate data with a defined correlation structure. Also, as someone who has switched from using SAS to R for teaching, Dr Apiolaza has some interesting perpectives on SAS versus R. His summary of reasons why he chooses R over SAS for academic and commercial use is a good one, and I reproduce it verbatim here:

More Read

The Role of Statistics in the Higgs Boson Discovery
Top 10 Ways to Apply Predictive Analytics in the Insurance Industry — and Your Industry?
The Science of Crisis Communication
Models Behaving Badly
Data Mining Models: Behavioral Segmentation and Classification
  • There is good integration between the programming language and the statistical functions. Both SAS macros and IML are poorly integrated with the data step and procs.
  • R is highly conducive to exploratory data analysis; visualization functions (either the lattice or the ggplot 2 packages) produce high quality plots that really help developing ideas to build models.
  • Statistics is not defined by the software. If someone develops a new methodology or algorithm chances are that there will be an R implementation almost immediately. If I want to test a new idea I can scramble to write some code that connects packages developed by other researchers.
  • It is relatively easy to integrate R with other languages, for example Python, to glue a variety of systems.
  • asreml-r!
  • I can exchange ideas with a huge number of people, because slowly R is becoming the de facto standard for many disciplines that make use of statistics.

Thanks to Dr Apiolaza for sharing such useful information; I’ve added Quantum Forest blog to my RSS feed and I look forward to more.

Quantum Forest: A shoebox for scribbles on data analysis

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Voice of the (Vocal Few) Customer(s)

5 Min Read

How to Personalize the Retail Experience with Data

7 Min Read

Ignore Your Business, Rake in the Profits

6 Min Read

First Look – Modern Analytics

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?