Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Luck and Skill of Scrabble
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > The Luck and Skill of Scrabble
AnalyticsR Programming LanguageStatistics

The Luck and Skill of Scrabble

DavidMSmith
DavidMSmith
9 Min Read
scrabble
Shutterstock Licensed Photo - 1938582667
SHARE

Scrabble is a game that involves both skill and luck. There’s skill in knowing the words you can play and — especially — the most advantageous ways to play them. This allows players with a wide vocabulary to excel from the get-go, while others rely on a word unscrambler to up their odds of winning. One might argue that even using a tool to automatically unscramble words gives players the chance to learn and improve their own skills for the next game. But there’s also luck in the tiles you draw randomly from the bag: get saddled with a rack containing four I’s and there’s usually not much you can do. That’s why professional Scrabble tournaments are decided by playing multiple games between each pair of players. Tournaments do this to average out the variability in tile draws between players, to make the deciding factor skill rather than luck.

But how much does luck affect a typical Scrabble game? Andrew C Thomas, a professor in Statistics at Carnegie Mellon University, came up with an ingenious idea to test this. (Thomas’s research will soon be published in a paper, a draft of which is now available on Arxiv.org.) What if we could observe a game between a couple of equally-matched players, where we “fix” the luck factor by determining the tiles each player gets in advance? Then, we can eliminate the “skill” factor by having those players re-play the fixed game many times: they’ll get the same letters, but might make different strategic plays during the game. Each player’s scores will vary over the series of games, but on average, the player with the better “luck” — in other words, the better pre-determined sequence of letters — will have the higher average score.

There are two problems with this approach. First of all, it’s not practical to get expert players to play the same game over and over with consistent results. Thomas solves this by using open-source Scrabble AI software instead. (To avoid the robot players making exactly the same moves each time, ha adds a small random factor to the AI decision-making process, by weighting the future value of any given move up or down a point or two.)

The second problem is more of a mechanical one: how can you guarantee that each robot player will get the same sequence of letters each time? In Scrabble, each player may play anywhere between one and seven tiles each move (with a 50-point “bingo” bonus for all seven), or play none at all and exchange some tiles for a new set randomly selected from the pool. The scheme Thomas comes up with to address this is very clever: rather than have each player draw from the same sequence, he pre-generates one sequence of tiles and has each player draw from opposite ends, as shown in this diagram from his paper:

More Read

Surviving the downturn lesson #73431
How to Eliminate Silos in Company-Wide Data Analytics
Two Books of Interest
Predictive Analytics: The Dos and Don’ts
The Year of Text Analytics
Tile racks large

In this diagram, Player 1 drew seven tiles from the left of the sequence to create the rack; Player 2 drew from the right. This way, each player gets the same sequence of tiles in the repeated games, regardless of the number of tiles played each move. Or nearly so: if Player 1 plays many long words in a game, he may access a tile toward the right of the sequence he doesn’t usually get. And tile exchanges, which are mixed in with the reserve sequence, add more variability. But in general, the more a letter is towards the left of the sequence, the more likely Player 1 will get to play it, and vice versa.

Again, in a real Scrabble game it would be impractical to lay out the tiles in a pre-determined sequence like this (especially without the players seeing them!). Thomas solves this problem by simulating the games in software: code in the R programming language simulates the sequence of tiles, hands new tiles to the AI players, and then observes their final score. 100 simulated matches are played for each sequence: the average score difference between Player 1 and Player 2 is then a measure of how “lucky” that sequence is for Player 1. And Thomas repeats this process for 10,000 different random sequences, which allows him to do statistical analysis in R on how the tile sequence (or “luck”) affects Scrabble games on average. For example, Thomas noted that most sequences where the Q was towards the left led to a point advantage for Player 2, and so in that sense Q is an “unlucky” tile to get. 

Thomas takes this analysis even further: when you get a high-value “power tile” like a Q or a Z also makes a difference. Getting a Q early in the game when there are few options to play it is bad; getting it later in the game when the board has more options is better; letting your opponent draw it is best. These options are reflected in where in the initial sequence (used by both players) the Q falls: towards the left, in the middle, or on the right. Using this method, Thomas maps average player’s scores for Q, J, X, and Z depending on where in the sequence they fall:

Power tiles

To the left of the chart, Player 1 has each tile early in the game; towards the right, Player 2 has it. In contrast to the Q, the X is generally beneficial to the player who draws it. Using these techniques, Thomas finds the following conclusions about tiles:

  • The blank is worth about 30 points to a good player, mainly by making 50-point “bingo” plays possible.
  • Each S is worth about 10 points to the player who draws it.
  • The Q is a burden to whichever player receives it, effectively serving as a 5 point penalty for having to deal with it due to its effect in reducing bingo opportunities, needing either a U or a blank for a chance at a bingo and a 50-point bonus.
  • The J is essentially neutral pointwise.
  • The X and the Z are each worth about 3-5 extra points to the player who receives them. Their difficulty in playing in bingoes is mitigated by their usefulness in other short words.

(Of course, all of these conclusions will depend on exactly which Scrabble dictionary you’re using: there are a lot more words available to play from the OED-based SOWPODS dictionary, and I presume this is based on the official TWL dictionary used in American Scrabble game. I’d love to see the effect on this chart of using British rules.)

Thomas also finds that the player who goes first generally has an advantage, to the tune of about 14 points. So if you’re a gracious Scrabble player, let your opponent go first.

AC Thomas: Statistics and Scrabble, Together At Last

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ESG reporting software
Data Shows How ESG Reporting Software Helps Companies Achieve Sustainability Goals
Big Data Infographic
ai in marketing
AI Helps Businesses Develop Better Marketing Strategies
Artificial Intelligence Exclusive
agenic ai
How Businesses Are Using AI to Make Smarter, Faster Decisions
Artificial Intelligence Exclusive
accountant using ai
AI Improves Integrity in Corporate Accounting
Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Truth about Social Media Analytics

6 Min Read
solution BI
AnalyticsBest PracticesBig DataBusiness IntelligenceData MiningITSocial DataSoftwareStatistics

What’s the Difference between Desktop BI and Solution BI?

17 Min Read

Smart email figures out who should get messages

1 Min Read
security analytics for supply chain management
Security

The Evolving Role of Analytics in Supply Chain Security

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?