Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Miss the Right Connections at Your Own Peril
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Miss the Right Connections at Your Own Peril
AnalyticsPredictive AnalyticsSocial DataSocial Media Analytics

Miss the Right Connections at Your Own Peril

BillFranks
BillFranks
5 Min Read
SHARE

connection analytics

connection analytics

Historically, most analytics have had laser focus on specific entities like a customer, a product, a vendor, or a variety of others. When performing analysis, the focus is usually purely based upon facts about each entity. For example, each customer’s individual spend, frequency, and demographics. While such analytics have proven quite valuable, they usually don’t account for the relationships between entities and the nature of those relationships.

This is where connection analytics (often called graph analysis) comes into play. Connection analytics is best known for its use in social network analysis, which is commonly used to explore the relationships between people within social media environments. However, connection analytics can be used for a much broader range of purposes that aren’t often given the credit deserved. After all, there are myriad situations where understanding relationships can provide meaningful insights. A few include:

More Read

Why Embedded Analytics is a Game Changer for UX
Facebook Analyzes Big Data, Concludes World is Smaller
Podcast Available
What Really Is Big Data? And Why It Will Change the World
The Future of Hiring and Keeping “Data Geeks” is Talent Analytics
  • The famous approach of taking into account the fact that members of a calling circle have a greatly increased risk of churn as other members of the circle defect to a different telecom service provider.
  • A variation on that example is for human resources to study the relationships between employees as evidenced by email communications to enable appropriate retention actions when an associate resigns.
  • Compliance officers and law enforcement can explore the patterns of communications and transactions to uncover fraudulent or otherwise suspicious activity between people or organizations.
  • Network engineers can explore the communications between various sensors to determine when network traffic is taking unexpected routes that may be caused by trouble with certain pieces of equipment.
  • Marketers can dive more deeply into the indirect linkages between products or product groups to come up with better cross- and up-sell opportunities.

As the examples illustrate, there is broad applicability of connection analytics. However, most organizations have not yet added it to their analytics arsenal.

This is a mistake.

Part of what makes the analysis of connections so powerful is that while virtually every metric typically used for analysis focuses only on facts about each individual entity, the analysis of connections makes it possible to also understand each entity’s relationships to others. The analysis of connections provides distinctive information that has very little overlap with other information typically available.

Of course, analyzing connections on a large scale is a computationally intensive process. To be effective, it is necessary to implement a graph analysis engine. One recent and strong entrant into this area is the Teradata Aster SQL-GR graph engine. This engine allows not just scalable graph analytics to be generated, but also makes it easy to combine graph analytics with a broad range of other analytics. This is important because analyzing connections is rarely all that is needed. Usually multiple types of analysis combined will yield the best results.

The concept of combining multiple types of analysis is very important. In the telecom churn example, service providers don’t react based only upon who is connected to a defecting customer. They also take into account the other factors they know about each customer to determine the risk of churn. For example, customers with longer tenure, multiple services, and multiple sub-accounts will be less likely to churn than newer     customers with only a single, basic service. This will still hold as a customer’s connections defect. The power is in the cumulative effect of all of the information being combined together.

While connection analytics won’t solve all of your organization’s problems, it can probably help solve some of them better. Given that it isn’t widely adopted yet, there is a chance to get a competitive advantage by putting it to use first. Ignore connection analytics at your own peril!

Share This Article
Facebook Pinterest LinkedIn
Share
ByBillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

multi model ai
How Teams Using Multi-Model AI Reduced Risk Without Slowing Innovation
Artificial Intelligence Exclusive
top data visualization tools
5 Top Data Visualization Tools for Research Projects
Big Data Data Visualization
cybersecurity tools
Evaluating the Best Value Cybersecurity Platforms for Enterprises
Exclusive IT Security
ai and satelite technology
How Machine Learning Improves Satellite Object Tracking
Exclusive Machine Learning

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Using Data to Measure Usability

10 Min Read

Guy Kawasaki’s Alltop Announces Version 3.0

3 Min Read
kirk borne
AnalyticsBest PracticesBig DataCulture/LeadershipIT

6 Experts Explain How IT Infrastructure Matters to Your Organization’s Data Sets

6 Min Read
Image
AnalyticsBig Data

Free Data Sources to Upgrade Your Business Decision-Making

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?