Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Miracle of Combining Forecasts
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > The Miracle of Combining Forecasts
Business Intelligence

The Miracle of Combining Forecasts

mvgilliland
mvgilliland
5 Min Read
business forecasting
Shutterstock Licensed Photo - By Sergey Nivens
SHARE

In 1947, in New York City, there was the Miracle on 34th Street. In 1980, at the Winter Olympics, there was the miracle on ice. In 1992, at the Academy Awards, there was the miracle of Marisa Tomei winning the Best Supporting Actress Oscar. And in 2014, on Wednesday afternoon this week, there was the miracle of getting off the SAS campus in the middle of winter storm Pax. There are also those “officially recognized” miracles that can land a person in sainthood. These frequently involve images burned into pancakes or grown into fruits and vegetables (e.g. the Richard Nixon eggplant). While I have little chance of becoming a saint, I have witnessed a miracle in the realm of business forecasting: the miracle of combining forecasts.

A Miracle of Business Forecasting

Last week’s installment of The BFD highlighted an interview with Greg Fishel, Chief Meteorologist at WRAL, on the topic of combined or “ensemble” models in weather forecasting. In this application, multiple perturbations of initial conditions (minor changes to temperature, humidity, etc.) are fed through the same forecasting model. If the various perturbations result in wildly different results, this indicates a high level of uncertainty in the forecast. If the various perturbations result in very similar results, the weather scientists consider this reason for good confidence in the forecast. In Fishel’s weather forecasting example, they create the ensemble forecast by passing multiple variations of the input data through the same forecasting model. This is different from typical business forecasting, where we feed the same initial conditions (e.g. a time series of historical sales) into multiple models. We then take a composite (e.g. an average) of the resulting forecasts, and that becomes our combined or ensemble forecast. In 2001, J. Scott Armstrong published a valuable summary of the literature in “Combining Forecasts” in his Principles of Forecasting. Armstrong’s work is referenced heavily in a recent piece by Graefe, Armstrong, Jones, and Cuzan in the International Journal of Forecasting (30 (2014) 43-54). Graefe et. al. remind us of the conditions under which combining is most valuable, and illustrate with an application to election forecasting. Since I am not much fond of politics or politicians, we’ll skip the elections part, but look at the conditions where combining can help:

  • “Combining is applicable to many estimation and forecasting problems. The only exception is when strong prior evidence exists that one method is best and the likelihood of bracketing is low” (p.44). [“Bracketing” occurs when one forecast was higher than the actual, and one was lower.] This suggests that combining forecasts should be our default method. We should only select one particular model when there is strong evidence it is best. However in most real-world forecasting situations, we cannot know in advance which forecast will be most accurate.
  • Combine forecasts from several methods. Armstrong recommended using at least five forecasts. These forecasts should be generated using methods that adhere to accepted forecasting procedures for the given situation.
  • “Combining forecasts is most valuable when the individual forecasts are diverse in the methods used and the theories and data upon which they are based” (p.45). Such forecasts are likely to include different biases and random errors — that we expect would help cancel each other out.
  • The larger the difference in the underlying theories or methods of component forecasts, the greater the extent and probability of error reduction through combining.
  • Weight the forecasts equally when you combine them. “A large body of analytical and empirical evidence supports the use of equal weights” (p.46). There is no guarantee that equal weights will produce the best results, but this is simple to do, easy to explain, and a fancier weighting method is probably not worth the effort.
  • “While combining is useful under all conditions, it is especially valuable in situations involving high levels of uncertainty” (p.51).

So forget about achieving sainthood the hard way. (If burning a charicature of Winston Churchill in a grilled cheese sandwich were easy, I’d be Pope by now). Instead, deliver a miracle to your organization the easy way — by combining forecasts. [For further discussion of combining forecasts in SAS forecasting software, see the 2012 SAS Global Forum paper “Combined Forecasts: What to Do When One Model Isn’t Good enough” by my colleagues Ed Blair, Michael Leonard, and Bruce Elsheimer.]

TAGGED:business forcasting
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?