Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Metadata versus Taxonomy
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Metadata versus Taxonomy
Data Mining

Metadata versus Taxonomy

MIKE20
MIKE20
4 Min Read
SHARE

I’ve advocated for many years that Information Management should be a superset of related disciplines including data warehousing, document management, library science, enterprise search et cetera.  While this is an easy statement to make, it is really hard to execute.

I’ve advocated for many years that Information Management should be a superset of related disciplines including data warehousing, document management, library science, enterprise search et cetera.  While this is an easy statement to make, it is really hard to execute.

The problem is that practitioners from the different technical backgrounds have radically different approaches to handling information in all of its forms.  While the technologies are different (using solutions as diverse as relational databases, file systems and even physical shelving) this is not the real reason why the disciplines are so hard to bring together.

More Read

The election in Iran and some real data analysis
First Look – Oracle Data Mining Update
Our work attempts to predict patient response to a combination…
The GenIQ Model Modeling and Data Mining Software
Telstra found guilty of abuses of telecommunications network data

Practitioners coming from unstructured and structured data backgrounds use subtly different definitions of metadata and I argue that it is these differences that cause most of the angst that comes through in disparate repositories, governance and a lack of integrated business solutions.

Unstructured data came first, and its filing is primarily treated as a problem of taxonomy.  The most famous approach is, of course, the Dewey Decimal System.  When unstructured data practitioners talk of metadata they include the taxonomy and attributes of the data itself such as the author, publication date, copyright and other core attributes (best defined by Dublin Core).

Structured data practitioners have, for the past forty years, relied on relational database theory as the foundation of their information management practices.  Relational data generally includes as data, rather than definition, the key elements of people, place and time.  Such an approach is very neat, with metadata being literally data about data and being restricted to data structures and the definition of the data elements themselves.  As a result, the metadata for structured data is much more succinct.

While succinct is a good thing for computer programmers, it seldom translates well for the rest of society.  As a result, structured database metadata has seldom found its way out of technical departments within large organisations.  At the same time, the need to understand who authored a record, who it was about and how it relates to other events in a timeline remain as important as ever.  As a result, we now have “master data”.

Perhaps the solution is for all Information Management practitioners to concede that Metadata should encompass both the metadata that structured data practitioners advocate and the master data that the unstructured data practitioners have long advocated as being essential.  We just have to get over our fixation on the titles.  I’ve tried to define an approach that does this in my new book, Information-Driven Business.

Read more at MIKE2.0: The Open Source Standard for Information Management

TAGGED:metadata
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Public Information

11 Min Read
Image
Big DataData Management

Metadata and the Baker/Baker Paradox

4 Min Read

Actionable Information Management Principles: People

8 Min Read

#11: Here’s a thought…

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?