Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Martha Stewart and Data-Centricity
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Martha Stewart and Data-Centricity
Data QualityPolicy and Governance

Martha Stewart and Data-Centricity

GwenThomas
GwenThomas
5 Min Read
SHARE

One of the LinkedIn Groups I participate in has spent the past two months discussing the following question: “Respect for data – are we beginning to see a shift from application centric to data centric enterprises?

One of the LinkedIn Groups I participate in has spent the past two months discussing the following question: “Respect for data – are we beginning to see a shift from application centric to data centric enterprises? Has the revolution started or am I just imagining?”  

And finally – as such discussions often do – the topic veered toward the need for Data Governance. Person 1 suggested the need for a rule that would, in effect, force respect by requiring projects that impacted reference data to gain approval for their approach from a data-centric governance board. Person 2 concurred, adding  ”Without Data Governance you have no controls in place. Without controls you’ve lost.”  

This is such a common situation. Violent agreement for the need for governance, but not the meaning. Person 1 is looking at POLICIES, while Person 2 is embracing the need to enforce _policies_. Both are important, but any stakeholder who is just grasping the idea of making data-centric decisions rather than application-centric ones might be confused.

More Read

5 Tips to Consider When Designing Supply Chain Key Performance Indicators
Google Reports Government Data Requests Reach All-Time High
New analysts and teenage love
It’s Time to Ditch Scarcity Thinking
A Tale of Two Seas

At the Data Governance Institute, we’ve started using the term “Big G” Governance to describe the policies, mandates, rulings, and rules of engagement that come from on high (wherever that is). An example is the rule that Person 1 suggests: Any project with a linkage to reference data is reviewed by a Board for a determination of whether the project is introducing data-related risk. Another such “Big G” Governance ruling might be that controlled reference data sets can be duplicated ONLY IF certain criteria are addressed that would ensure that the data stays in sync.

Of course, nobody wants bureaucracy, and “Big G” Governance never exists for its own sake. I had to agree with Person 2 in the discussion that data-related controls are what we’re ultimately aiming for. Controls need to be embedded  in projects, processes, data flows, applications, and information management practices to ensure that the data and the people who touch it adhere to policies, standards, rulings, and rules of engagement. Here, down in the trenches, our objective is to institute a series of “little g” governance control points.

Of course, it can be tricky to translate policy to practice, so much of the work of Data Governance teams takes place in the all-important alignment layer between “Big G” and “little g” efforts. This is where stakeholders, subject matter experts, and experts get together to decide how to embed and enforce controls.

Application-centric or data-centric? The implementation of many “little g” governance efforts continue to be considered and managed from an application-centric point of view. That’s fine, as long as they’re the appropriate controls.

What I see changing, though, are awareness levels of mid-level and senior-level consumers of information.More and more of them seem to understand that:

  • Inadequate Reports/BI/Analytics can result from inadequate “little g” governance controls.
  • The people down in the trenches who work with those controls often get contradictory instructions, and that a key to aligned controls is aligned decision-making by managers and architects.
  • Alignment activities require enforceable rulings and a certain level of empowerment to interpret them, embed them, and enforce them. 

So these under-served stakeholders are calling out for data-centric “Big G” rules, rules of engagement, and councils to address gaps, overlaps, and conflicts.And – as Martha Stewart so famously says – “That’s a good thing.”

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Top Ten Root Causes of Data Quality Problems: Part Three

4 Min Read

Test, Learn, Adapt: Using Analytics to Improve Public Policy

3 Min Read
Image
Best PracticesBig DataData QualityData Warehousing

Why Lean Data Management Is Vital for Agile Companies

6 Min Read
predictive analytics limitations
AnalyticsBusiness IntelligenceData ManagementPolicy and GovernancePredictive AnalyticsRisk Management

Predictive Analytics Limitations with Small Business Risk Assessments

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?