Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Map and Reduce in MapReduce: a SAS Illustration
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Map and Reduce in MapReduce: a SAS Illustration
Hadoop

Map and Reduce in MapReduce: a SAS Illustration

JiangtangHu
JiangtangHu
3 Min Read
SHARE

In last post, I mentioned Hadoop, the open source implementation of Google’s MapReduce for parallelized processing of big data.

In last post, I mentioned Hadoop, the open source implementation of Google’s MapReduce for parallelized processing of big data. In this long National Holiday, I read the original Google paper, MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat and got that the terminologies of “map” and “reduce” were basically borrowed from Lisp, an old functional language that I even didn’t play “hello world” with. For Python users, the idea of Map and Reduce is also very straightforward because the workhorse data structure in Python is just the list, a sequence of values that you can just imagine that they are the nodes(clusters, chunk servers, …) in a distributed system.

MapReduce is a programming framework and really language independent, so SAS users can also get the basic idea from their daily programming practices and here is just a simple illustration using data step array (not array in Proc FCMP or matrix in IML). Data step array in SAS is fundamentally not a data structure but a convenient way of processing group of variables, but it can also be used to play some list operations like in Python and other rich data structure supporting languages(an editable version can be founded in here):

MapReduce

More Read

Aligning Big Data
Big Data Advances Lead to More Optimal SEO-Predicated Hosting
A Technical Look at Big Data
4 Ways Hadoop Is Improving Our Healthcare System
The 4 Key Pillars of Hadoop Performance and Scalability

Follow code above, the programming task is to capitalize a string “Hadoop” (Line 2) and the “master” method is just to capitalize the string in buddle(Line 8): just use a master machine to processing the data.

Then we introduce the idea of “big data” that the string is too huge to one master machine, so “master method” failed. Now we distribute the task to thousands of low cost machines (workers, slaves, chunk servers,. . . in this case, the one dimensional array with size of 6, see Line 11), each machine produces parts of the job (each array element only capitalizes a single letter in sequence, see Line 12-14). Such distributing operation is called “map”. In a MapReduce system, a master machine is also needed to assign the maps and reduce.

How about “reduce”?  A “reduce” operation is also called “fold”—for example, in Line 17, the operation to combine all the separately values into a single value: combine results from multiple worker machines.

TAGGED:MapReduce
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in business
Recurring Revenue Strategies for the AI Business Era
Artificial Intelligence Exclusive
ai for playground safety
Using Data to Plan Safer, More Efficient Public Playgrounds
Big Data Exclusive
AI for cybersecurity
How AI Supports Modern Penetration Testing
Artificial Intelligence Exclusive
ai kids and their parents
How Cities Use AI to Improve Playground Design
Exclusive News

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Terabytes of trees

4 Min Read

Amazon Elastic MapReduce, and other stuff I don’t have time to grok yet

4 Min Read

The Fallacy of the Data Scientist Shortage

8 Min Read

The concept of non-relational analytics

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?