Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How to Deliver a Data Science Project Successfully
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > How to Deliver a Data Science Project Successfully
Data Management

How to Deliver a Data Science Project Successfully

Rehan Ijaz
Rehan Ijaz
5 Min Read
data science and SMEs
Shutterstock Licensed Photo - By Wright Studio
SHARE

It is demanding to know where to begin once zoućve decided that, yes, you wish to dive into the fascinating world of data and AI. Just having a look at all the technologies you need to understand all the tools you’re supposed to master is enough to make you confused.

Contents
  • 1. Understanding the business
  • 2. Gather your data
  • 3. Explore and clean your data
  • 4. Enrich your dataset
  • 5. Get predictive
  • In conclusion

Well, luckily for you, creating your first data project is actually not difficult as it seems. Becoming data-powered is first and most foremost about having to learn the basic steps and following them to go from raw data to create a machine learning model, and in the end to operationalization.

Let’s jump into the following steps that will help you in successfully delivering a data science project.

1. Understanding the business

Having an understanding of the business or activity that your data project is part of is one of the major keys to ensuring its success. To motivate different participants necessary to get your project from design to creation, your project must be the answer to a clear organizational need or problem. So before you even think about the data, venture out and talk to the people in your organization whose processes you aim to improve with data.

More Read

network monitoring for real-time data streaming
Understanding the Network Monitoring Needs of Real-Time Data Streaming
The State of US Cyber Security
How to Develop a Big Data Strategy to Outperform Your Competitors
Data Preparation: Is the Dream of Reversing the 80/20 Rule Dead?
SAS Coding: Scattered Data Might Need CPORT Procedure Help

Afterward, sit down and define a timeline and concrete key performance indicators.

2. Gather your data

Once you’ve figured your goal out, it’s time to start looking for your crucial data. Mixing and merging data from as many sources as possible is what defines a great project, so reach out as far as possible.

Here are a few ways to gather some data:

  1. Connect to a database: Ask your data and IT teams for the data that’s openly available, or create your private database up, and start digging through it to understand what information your company has been collecting.
  2. Use APIs: Think of the APIs to all the tools your company’s been using, and the raw data these guys have been gathering. You have to work on getting these all set up so you can use those email stats, the info your sales team put in Pipedrive or similar Salesforce, the support ticked somebody filled, etc. If you’re not an expert coder, plugins in DSS can give you lots of options to bring in your external data.

3. Explore and clean your data

Once you’ve gathered your data, it’s time to get to work on it. Start digging to see what you’ve got and how you can merge everything together to answer your original goal. Start writing notes on your first analyses, and ask questions to business and people, or the IT guys, to understand what these variables mean.

4. Enrich your dataset

Now that you’ve got somewhat clean data, it’s time to manipulate it in order to get the most value of it. You should begin by joining all your different sources and group logs to specify your data down to essential features.

An example of that is to enrich your data by creating a time-based feature like:

  • Extracting time and date components
  • Calculating variations between date columns
  • Flagging holidays of national matter

5. Get predictive

This is when the actual fun starts. Machine learning algorithms can help you go a step further into acquiring insights and predicting trends of the future. Also using a data science platform is one of the easiest methods in automating your machine learning pipeline.

By working with clustering algorithms, you’re able to create models to uncover trends in the data that were not easily seen in graphs and stats. These create groups of similar events, also known as clusters, and more or less explicitly express which feature is decisive in these results.

In conclusion

In order to successfully finish your first data project, you need to be aware that your model will never be fully “finished” – for it to remain useful and accurate, you need to constantly reevaluate, retrain it and create new features.

A data scientists’ job is never actually done, but that’s what makes working with data all the more interesting!

Share This Article
Facebook Pinterest LinkedIn
Share
ByRehan Ijaz
Follow:
Rehan is an entrepreneur, business graduate, content strategist and editor overseeing contributed content at BigdataShowcase. He is passionate about writing stuff for startups. His areas of interest include digital business strategy and strategic decision making.

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Big Data, Big Mistakes?

7 Min Read
recruiting GDPR experts
Best PracticesData ManagementExclusiveGDPRPrivacy

Understanding The Role Of Data In Recruiting GDPR Experts

5 Min Read

Seven Business Intelligence Project Pitfalls

3 Min Read
Image
AnalyticsBig DataBusiness IntelligenceCulture/LeadershipData ManagementIT

SDC to Co-sponsor Ventana Research’s Biz-Tech Innovation Summit

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?