Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How to Program MapReduce Jobs in Hadoop with R
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > How to Program MapReduce Jobs in Hadoop with R
AnalyticsHadoopR Programming Language

How to Program MapReduce Jobs in Hadoop with R

DavidMSmith
DavidMSmith
3 Min Read
SHARE

MapReduce is a powerful programming framework for efficiently processing very large amounts of data stored in the Hadoop distributed filesystem.

MapReduce is a powerful programming framework for efficiently processing very large amounts of data stored in the Hadoop distributed filesystem. But while several programming frameworks for Hadoop exist, few are tuned to the needs of data analysts who typically work in the R environment as opposed to general-purpose languages like Java.

That’s why the dev team at Revolution Analytics created the RHadoop project, to give R progammers powerful open-source tools to analyze data stored in Hadoop. RHadoop provides a new R package called rmr, whose goals are:

  • To provide map-reduce programmers the easiest, most productive, most elegant way to write map reduce jobs. Programs written using the rmr package may need one-two orders of magnitude less code than Java, while being written in a readable, reusable and extensible language.
  • To give R programmers a way to access the map-reduce programming paradigm and way to work on big data sets in a way that is natural for data analysts working in R.

Together with its companion packages rhdfs and rhbase (for working with HDFS and HBASE datastores, respectively, in R) the rmr package provides a way for data analysts to access massive, fault tolerant parallelism without needing to master distributed programming. By providing an abstraction layer on top of all of the Hadoop implementation details, the rmr package lets the R programmer focus on the data analysis of very large data sets.

More Read

Kahneman and Data Management: A Critique of ‘Thinking Fast and Slow’
SAS Global Conference 2009
How big data is affecting social media metrics and Facebook ad strategies
Getting Ready for the Post-Season: Numerati Baseball
The Power of Big Data and Analytics in Digital Signage

If you want to get started with MapReduce programming in R, this tutorial on rmr shows simple equivalents to the R functions lapply and tapply in map-reduce form. It also gives some simplified, but practical examples of doing linear and logistic regression and k-means clustering via map-reduce. For more advanced map-reduce programmers, these pages on efficient rmr techniques and writing composable mapreduce jobs will also be of interest.

The rmr package is available for download from the github repository under the open-source Apache license, and we encourage other Hadoop developers to get involved with the RHadoop project.

Note: As an introduction to the RHadoop, project lead Antonio Piccolbini will join Revolution Analytics CTO David Champagne for a webinar Wednesday, September 21. Register here for a live introduction to the rmr package and how to use it to analyze big data sets within the map-reduce framework.

githib: Revolution Analytics RHadoop Project

TAGGED:MapReduce
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Ring in the New Year with New Data Products

4 Min Read

Map and Reduce in MapReduce: a SAS Illustration

3 Min Read

What Is a Data Scientist (and What Isn’t)?

7 Min Read

The Fallacy of the Data Scientist Shortage

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?