By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: How Data-as-a-Service (DaaS) Is Revolutionizing Marketing
Share
Notification Show More
Latest News
ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > How Data-as-a-Service (DaaS) Is Revolutionizing Marketing
Big Data

How Data-as-a-Service (DaaS) Is Revolutionizing Marketing

Lbedgood
Last updated: 2015/03/03 at 2:45 PM
Lbedgood
9 Min Read
SHARE

Marketers analyze the data and crunch the numbers – but how many can really say they know which consumers or businesses are in market for their products and services? Or how many companies are overly dependent on modeling what they thinka prospect or customer may do versus having real-time insights into their actual behaviors?

Contents
What is DaaS?How DaaS Delivers In-Market Consumers and BusinessesUnique Data Sets

Marketers analyze the data and crunch the numbers – but how many can really say they know which consumers or businesses are in market for their products and services? Or how many companies are overly dependent on modeling what they thinka prospect or customer may do versus having real-time insights into their actual behaviors?

Primed to make a huge entrance in 2015, Data-as-a-Service (DaaS) empowers companies with real-time data to overcome these tough marketing challenges. In fact, DaaS is completely revolutionizing marketing – generating real-time insights and revenue from Big Data has become a reality, no longer a process that takes months.

More Read

Data-as-a-Service: Real-Life Examples of Companies Who Are Using DaaS to Boost Revenue

What is DaaS?

Most marketing and risk systems still source data like it was pre 2003. Yet, the opportunity to refine strategic and operational decision making by taking full advantage of Big Data is compelling.

Within this vast amount of information is valuable and available data. This is the new world of Big Data and the information being created can be used in real-time to generate previously unimagined opportunities.

Many organizations still struggle internally with connecting all the dots within this myriad of data. This is where the thinking behind DaaS comes into play – an emerging category that is taking the marketing world by storm.

DaaS is a service approach in which unique and Hard-to-Find Data (HTFD) assets are sourced and structured to deliver a constant stream of qualified prospects, including a company’s own customers, who are actively searching for what they are selling. Distinctly different from list buying, these data sources are a highly customized marketing asset versus disconnected, one-time use prospect lists.

In-market prospects and customers are delivered directly to a company’s channel systems or digital marketing platforms, allowing marketers to can send real-time messaging, personalized recommendations, and highly targeted content.

How DaaS Delivers In-Market Consumers and Businesses

DaaS combines three types of data which are uniquely customized to each company:

  1. Foundational Data:
    1st party data combined with 3rd party and HTFD. These specialty HTFD sets have been aggregated from hundreds of Big Data sources and go well beyond third party lists.  As an example, these may be highly specialized sources of furniture or fashion interests, or spend data on specific businesses by categories.

  2. Onboarded Data:
    Offline data transformed into addressable online identities. Onboarding provides new opportunities to reach customers and prospects in the digital universe. For example, targeted display campaigns can be displayed to specific customer and prospect segments. A financial company may want to target key customer groups with display ads that cross-sell another product. Or an auto company may show ads to people whose leases are up for renewal.

  3. Fast Data:
    Real-time behavioral data. Fast Data aggregates event and behavioral-driven data to determine purchase intent as it occurs. Examples may include social purchase signals, such as People posting to social networks such as “Excited about the new baby” or “Taking a family vacation.” Or these may be discretionary purchase power signals, such as customers and prospects who are securing new credit sources, selling and buying cars or planning to move residences.

Unique Data Sets

To really understand the potential of unique data sets sourced through DaaS – both HTFD and fast data, it is important to understand where all this data is coming from. The information being generated from Big Data can be segmented into six specific categories:

  1. Web Mining: Data compiled by mining the open web. This includes automated processes of discovering and extracting information from Web documents and servers, including mining unstructured data. This can be information extracted from server logs and browser activity, information extracted about the links and structure of a site, or information extracted from page content and documents.

  2. Search Information: Data available as a result of browser activity tracking search and intent behavior. This data also identifies digital audiences through onboarding (matching consumers to their online IDs).

  3. Social Media: The average global Internet user spends two and a half hours daily on social media. A vast array of data is available on personal preferences, likes, “check-ins”, shares, and comments users are making.

  1. Crowd Sourcing: This is collective intelligence gathered from the public. Data is compiled from multiple sources or large communities of people, including forums, surveys, polls, and other types of user-generated media.

  2. Transactional: Data that is created when organizations conduct business, and can be financial, logistical or any related process involving activities such as purchases, requests, insurance claims, deposits, withdrawals, flight reservations, credit card purchases, etc.

  3. Mobile: Mobile data is driving the largest surge in data volume. It isn’t only a function of smartphone penetration and consumer usage patterns. The data is also created by apps or other services working in the background.

DaaS mines these Big Data sources to deliver highly customized data assets. Some examples include:

  • Niche company lists, beyond high level SIC and NAIC code descriptions
  • Data collected on residential and commercial building permits 88 million residential and commercial building permits, 155 million inspection records, and 7 million contractors in the U.S.
  • Spend data on specific businesses by categories.
  • U.S. manufacturing industry data with unique attributes such as certifications (ANSI, ISO), business type (exporter, distributor) and products & services (adhesive technologies, compounds).
  • Comprehensive healthcare data (doctors, dentists, other prescribers, their practices, clinics, hospitals, etc.)
  • Directly measured Digital Footprint Data, that includes web pages surfed (minority of web traffic) all email and Machine to Machine (Internet of Things) digital activity (the majority of web traffic) – 60-80 Billion Transactions Daily.
  • Aggregated “intent data” from over 160 million unique users on e-commerce, online travel agency and auto comparison sites.
  • Digital data that includes web pages surfed, all email, and Machine to Machine (Internet of Things) digital activity.
  • Transactional data such as purchases, requests, insurance claims, deposits, withdrawals, flight reservations, credit card purchases, and more.
  • Search data on any term, such as “Home Renovation”, “Excited about the Move”, or competitors names and products.

For years, organizations have been reliant on their internal data or data enhancements from list brokers. This is stagnant data compiled from third parties. DaaS on the other hand is transformational in nature – a revolutionary way of mining today’s massive data sets to find qualified prospects in the market now for what a company is selling.

So why model families who may be interested in family vacations when you can send campaigns to consumers who just booked plane tickets? Or why try to figure out who to target for a retail campaign when you can receive daily streams of prospects who are actively searching online for products you (or your competitors) sell? The possibilities are endless.

Rather than focusing on developing and managing an intricate network of data, companies can focus on the business outcomes and marketing advantages of Big Data.  Generating immediate revenue from Big Data is a universal goal for most marketers – and DaaS makes this possible for businesses across any type of industry.

 

TAGGED: DaaS
Lbedgood March 3, 2015
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai in automotive industry
AI Is Changing the Automotive Industry Forever
Artificial Intelligence
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Data-as-a-Service: Real-Life Examples of Companies Who Are Using DaaS to Boost Revenue

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?