Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How to Clean Survey Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > How to Clean Survey Data
Uncategorized

How to Clean Survey Data

AnniePettit
AnniePettit
3 Min Read
SHARE

How to clean survey data

How to clean survey data

 

As much as you’d like to dive directly into your data, the best data analysts know that garbage in garbage out will be the phrase of the day if time isn’t spent cleaning the data first. With that in mind, here are a few important steps you’ll need to take to clean your survey data.

  1. The most important thing you can do during the data cleaning process is to save your dataset with a new name after every significant change. Save the original, untouched dataset with a specific name, e.g., “PetFoodSurveyRAW.” After that, add a number to the end of the name, e.g., PetFoodSurvey1, PetFoodSurvey2, PetFoodSurvey3, PetFoodSurvey4. You can never have too many versions, particularly when you realize at PetFoodSurvey17 that you made a mistake and need to return to PetFoodSurvey6.
  2. Run a frequency distribution of each variable. By looking for these specific issues, you will be able to determine whether your data was properly uploaded into the software, whether certain questions were coded incorrectly, whether the skip patterns functioned as planned, and whether certain people had difficulty responding. Look for:
    1. Numbers that are unexpectedly high or low
    2. Numbers that seem unrealistic given the question
    3. Responses that are rare
    4. Responses that were selected by no one
  3. Make sure numerical variables are defined as such, and not as string variables. Otherwise, anytime you ask for a frequency distribution, the numbers will not be in order and mistakes will happen. Improper definitions will also prevent some variables from being available for certain statistical analyses.
  4. Make sure that missing responses were not automatically recoded as valid responses by the statistical software. For instance, some software systems may change an empty cell into a zero which might actually be a real answer. This could change average scores and percentages in massive ways causing you to make massively incorrect generalizations.
  5. Check that every variable label matches the data. For instance, make sure that the label “Male” truly corresponds with the number “1″ assigned to it. Check EVERY variable.
  6. Lastly, apply your standard data quality process to remove any survey responses that don’t seem to have come from people who were paying close attention to their answers. Of course, you’ll need to make sure you’ve already included data quality questions in your survey.

Let the analyses begin!

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic
multi model ai
How Teams Using Multi-Model AI Reduced Risk Without Slowing Innovation
Artificial Intelligence Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Belated Gift: Make a Valentine’s Heart with R

2 Min Read

The Power of Twitter

2 Min Read

A Blog I Like: Devost.net

2 Min Read
Image
Uncategorized

What Could IBM’s Watson Do for Your Organisation?

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?