Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Google Search Algorithms Use Big Data for Multilingual Latent Semantic Indexing
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Google Search Algorithms Use Big Data for Multilingual Latent Semantic Indexing
Big DataExclusiveMachine LearningNews

Google Search Algorithms Use Big Data for Multilingual Latent Semantic Indexing

Sean Mallon
Sean Mallon
6 Min Read
Google algorithm updates
Shutterstock Licensed Photo - By Bakhtiar Zein
SHARE

Google has perfected its ability to execute web search results for its users all over the world. In the early days of the Internet, the search engine was primarily suited for displaying search results for English users. Non-English-speaking users have complained that search results are often displayed in the wrong language entirely. However, Google is becoming more proficient at providing search results in other languages as well. A lot of factors can play a role, but one of the biggest is its use of deep learning to understand semantic references—enter semantic indexing. This can now be accomplished in any language that Google serves.

Contents
Semantic Indexing is Google’s Newest Advantage in the Search Engine MarketHow Can Google Account for This Unpredictable Behavior?Opportunities and limitations of using deep learning and semantic indexing for aggregating multilingual search results

Semantic Indexing is Google’s Newest Advantage in the Search Engine Market

Google has dominated the search engine industry for nearly two decades. The search engine giant has thrived by refining its algorithm to better infer user intent and match people with the most relevant content. Over the past few years, they have perfected this outcome by using deep learning to better understand the context of search queries their customers are using.

Of course, human technicians do not provide search results for the 3.5 billion searches on Google every day. The search engine aggregates content based on a ranking system dependent solely on artificial intelligence. Such an AI system would be rather simple if there were a finite number of pre-defined inputs.

Of course, that obviously is not the case. Human beings who use Google to conduct search queries are notoriously unpredictable. They can invent an endless number of search queries. In fact, 15% of search engine queries have never been used before.  The spectrum of search terms is changing all the time to reflect new trends in the macro environment.

More Read

3 Ways IoT is Transforming the Logistics & Transportation Industry
Role of Risk Audits: How the Cloud & Big Data have Changed Them
Assessing the Severity of SQL Injection Threats to IoT Security
Apache Spark Pitfalls: The Limitations of the Big Data Processing Giant
#18: Here’s a thought…

How Can Google Account for This Unpredictable Behavior?

In order to handle increasing volume of search queries, Google had to become very adaptable about being able to understand the true meaning of different search queries. This required the algorithms to understand the contextual meaning behind various word pairs, rather than individual words without any contextual markers.

Deep learning has played a crucial role in this process. Google web crawlers have scanned the Internet to understand the relationship between various words in specific contexts. The more frequently these pages are indexed, the better understanding the algorithms have of the relationship between various words.

Opportunities and limitations of using deep learning and semantic indexing for aggregating multilingual search results

Google has captured over 70% of the global search engine market. However, it does not have close to a monopoly in some regions. In fact, in some parts of the world, less than 1% of all search careers are conducted through Google. Native search engines are more dependable for indexing relevant content for users speaking those languages than Google. Some of this discrepancy is due to regulatory policies in authoritarian regimes, but it is also partially due to Google’s limited ability to understand the contextual meanings of various search phrases and languages other than English.

According to Shout Agency, an SEO agency in Australia, the structure of the algorithms themselves is not the core problem. Google can index any content in any language and make educated assumptions about relevance based on its own knowledge of various word pairs. While Google developers have intentionally built in biases for some search phrases, such as the “payday loan” penalty, these adjustments are the exception rather than the rule.

So, if the algorithms are equally suited for aggregating search results in any language, why is there a discrepancy in the quality of search results in different languages? The problem almost entirely stems from the fact that Google has had fewer opportunities to conduct deep learning in some languages than others. There is less content available and fewer users are searching in those languages.

Over time, though, the results will improve. As long as more content is created, web crawlers will have more opportunities to understand the nature of different search terms and aggregate content appropriately.

However, there is one risk that needs to be considered. Google is less likely to conduct manual penalties for content in some regions, due to the smaller user base and fewer Google employees that can understand the language enough to gauge the quality of the content. This could mean that there is going to be a greater prevalence of spun content, which will likely throw off the results of the algorithms that depend on deep learning.

However, this is unlikely to be an issue in regions with popular languages, such as Spanish, Portuguese, and French. Deep learning will continue to improve the quality of search results in almost every language across the world.

TAGGED:big dataGoogle search algorithmsearch enginessemantic indexing
Share This Article
Facebook Pinterest LinkedIn
Share
BySean Mallon
Sean is a freelance writer and big data expert with a passion for exploring the depths of information that can be extracted from massive datasets. With years of experience in the field, he has developed a deep understanding of how data can be harnessed to drive insights and make informed decisions.

Follow us on Facebook

Latest News

data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive
blockchain for ICOs
The Role of Blockchain in ICO Fundraising
Blockchain Exclusive
ai in business
How AI Helps Businesses Discover Specialized Niches
Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Does It Take a Scientist to Find Gold in Big Data?

0 Min Read
predictive analytics in cms
AnalyticsExclusivePredictive Analytics

The Fascinating Role of Predictive Analytics in CMS Today

6 Min Read

Go Shopping, Be Social

2 Min Read
ways data can help increase kpis
Data CollectionMarketing

4 Ways Data Can Help Increase KPIs For Dispatch Teams

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?