Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Good Business Objective Beats a Good Algorithm
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > A Good Business Objective Beats a Good Algorithm
AnalyticsBig Data

A Good Business Objective Beats a Good Algorithm

DeanAbbott
DeanAbbott
5 Min Read
Image
SHARE

ImagePredictive Modeling competitions, once the arena for a few data mining conferences, has now become big business. Kaggle (kaggle.com) is perhaps the most well-known forum for modeling competitions, using a crowd-sourcing mentality: if more people try to solve a problem, the likelihood that someone will create an excellent solution to that problem increases.

ImagePredictive Modeling competitions, once the arena for a few data mining conferences, has now become big business. Kaggle (kaggle.com) is perhaps the most well-known forum for modeling competitions, using a crowd-sourcing mentality: if more people try to solve a problem, the likelihood that someone will create an excellent solution to that problem increases.

The participants, and there have been 10s of thousands of participants since their 2011 beginning, sometimes have no predictive modeling background and sometimes an extensive data science background. Some very clever algorithms and solutions have been developed with, on some occasions, ground-breaking results

One conclusion to draw from these competitions is that what we need in the predictive analytics space is more data scientists with different, innovative ideas for solving problems, and perhaps more in-depth training of data scientists so they can create these innovative solutions. After all, the Netflix prize winner created a solution that was an ensemble of model ensembles, comprised of hundreds of models (not a Kaggle competition, but one created by and for Netflix).

More Read

top big data trends in 2022
5 Current Trends in Big Data for 2022 and Beyond
Kosmix: Clustering Search Results
Evolution of Thinking about Cloud ERP Software
Data-as-a-Service: Real-Life Examples of Companies Who Are Using DaaS to Boost Revenue
Warning! When Big Data Turns Bad

This idea of the importance of machine learning expertise was the topic of a Strata conference debate in 2012, tackling the question, “which is more important, domain expertise or machine learning expertise”, or the way it was phrased for the debate, “who should your first hire be: a domain expert or data scientist?”

The conclusion of the majority at the Strata conference was the machine learning is more important, but even the moderator, Mark Driscoll, concluded the following,

“Could you currently prepare your data for a Kaggle competition?  If so, then hire a machine learner.  If not, hire a data scientist who has the domain expertise and the data hacking skills to get you there.” (http://medriscoll.com/post/18784448854/the-data-science-debate-domain-expertise-or-machine)

The point is that defining the competition objectives and the data needed to solve the problem is critically important. Non-domain experts, the data scientists, can not ever hope to understand the domain well enough to determine what the most effective question to answer would be, where to find the data to build a modeling data set, what the target variable should be, and how one should assess which model is best. These are business domain specific.

Even companies building the same kinds of models, let’s say customer retention or churn, will approach them differently depending on the kind of business, the lead time needed to act on potential churners, and the metrics for churn that relate to ROI for that company. I’ve build models for companies in the same domain area that took very different approaches; even though I had some domain experience from customer 1, that didn’t translate into developing business objectives well for company 2.

It’s the partnership that matters. I often think of these partnerships within an organization as the three-legged stool, all of which are needed for the modeling project to succeed: a business stakeholder who understands what business objectives matter to the company and how to articulate them, IT staff who know where the data is, what it means, and how to access it, and the analysts who know how to take the data and the business objectives and translate them into modeling objectives that address the business problem. Without all three, projects fail. We modelers could build the best models in the world that solve the wrong problem exceedingly well!

image: algorithm/shutterstock

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsBig DataData ManagementHadoopITSoftwareUnstructured Data

Big Data Hadoop Use Cases in the Oil and Gas Industry

6 Min Read
insurance data
Big Data

How Insurers Evaluate Data and Incorporate it Into their Business Model

6 Min Read

How To Create Business Value with Analytics

4 Min Read
ICO and GDPR
Big DataData ManagementExclusivePolicy and GovernancePrivacyRisk ManagementSecurity

Can ICO Data Awareness Campaigns Create More Trust In Crypto?

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?