Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Forex Trading with R : Part 2
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Visualization > Forex Trading with R : Part 2
Data VisualizationPredictive Analytics

Forex Trading with R : Part 2

ThemosKalafatis
ThemosKalafatis
4 Min Read
SHARE

In the previous post the first steps were given for building the basis for trading forex. Now it is time to build the actual classifiers that can give us future buy / hold / sell signals.

Assuming that everything is in working order and the instructions given in the previous post were followed we can start building these classifiers.

This application could be very useful for traders. It relies heavily on daily forex signals. The trick is to train it properly.

First let’s train a Neural Network. The following command trains a Neural Network and then applies the trained model on our test data and outputs the predictions for buy/sell/hold signals :

set.seed(134)
nn <- nnet(class~.,traindata, size = 3, rang = 0.1,decay = 0.001, maxit = 3000,trace=”F”)
table(actual=testdata$class,predicted=predict(nn,newdata=testdata,type=”class”))

Note that a seed number was used.  You should either try different seed numbers (so that network weights are re-initialized) or omit the set.seed() directive. You should also experiment with other Neural Net parameters such as the number of iterations (maxit), the learning decay (decay), etc.The confusion matrix shows us the necessary information for calculating TP, FP, TN,FN rates for each class (ie for each signal type).Similarly we can train and test a Random Forest :

rf.model<-randomForest(class~.,data=traindata,nodesize=40,importance=FALSE,mtry=3,ntree=100)
table(actual=testdata$class,predicted=predict(rf.model,newdata=testdata,type=”class”))

Now let’s train an SVM for our data. We can issue the following command :
###train SVM
sv<-svm(class~.,traindata,gamma=0.01,cost=5,kernel=”radial”)
 
To see how the classifier did on the test set, we enter :
table(actual=testdata$class,predicted=predict(sv,newdata=testdata,type=”class”))
Next we can try to optimize parameters of the SVM classifier as follows :#find optimal values of Gamma and Cost for an RBF- SVM classifier
tuned <- tune(svm, class~., data = traindata,ranges = list(gamma = c(0.0001,0.001,0.05,0.1,0.2,0.3), cost = c(1,5,10,20,50,100,120,130)),tunecontrol = tune.control(sampling = “cross”),cross=10)
tunedThe first command uses 10-fold cross validation to identify the best gamma and cost parameters among some predetermined values. We then issue the command tuned to see which combination of parameters  gives us the lowest classification error. Knowing these parameters we can then use these parameters to train an SVM classifier and see how this model performs (as was shown previously).

Be aware of the following key points :

  1. Three sets of data should be used : Training, Test and Validation. The Validation set should not be a part of the optimization (=finding the best algorithm parameters) process.
  2. Make sure that you create classifiers for several time periods. Test the performance of any classifier according to the percentage of available data you use for training / testing / validation and the number of periods you use for the sliding window.
  3. Make also sure that once you have chosen your model, you use a correct way to test your system by simulating buy / hold / sell signals and taking under consideration all associated trading costs.
TAGGED:r
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Interview with Anne Milley, SAS II

10 Min Read

A statistical learning web service, in R

4 Min Read

Slides from OSCON

4 Min Read

Visualizing Katrina’s Strongest Winds with R

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?