Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: First Look – SAS/OR
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > First Look – SAS/OR
Decision ManagementModeling

First Look – SAS/OR

JamesTaylor
JamesTaylor
7 Min Read
SHARE

I have been doing more thinking about optimization recently and thought I should get caught up with the OR (Operations Research) folks at SAS to see what they are doing. They see OR technologies as part of the overall analytics spectrum and feel that anything that improves the rigor of decision making without unduly constraining it is a good thing. Anyway, the SAS/OR group has three main areas of focus – optimization, simulation and project/resource scheduling.

I have been doing more thinking about optimization recently and thought I should get caught up with the OR (Operations Research) folks at SAS to see what they are doing. They see OR technologies as part of the overall analytics spectrum and feel that anything that improves the rigor of decision making without unduly constraining it is a good thing. Anyway, the SAS/OR group has three main areas of focus – optimization, simulation and project/resource scheduling.

Optimization is where SAS started in this space and continues to be the key area. Optimization is the answer to “what do we do next” when a decision-making process has been improved, informed, and cleaned up as much as possible. When an organization has reached this level of analytic maturity the SAS/OR team will often come in to move them to the next level. It is not a radical transition for SAS users to adopt the SAS optimization tools as OPTMODEL, the optimization modeling and solution module, is an optimization modeling language that is also a SAS procedure and so it inherits a lot of SAS concepts and programming constructs. OPTMODEL provides a syntax for optimization problems – everything from Linear Programming to Mixed Integer, Quadratic, and Non-Linear programming. OPTMODEL can use the various pre-built solvers that SAS provides, lets you build on them in your own way, use custom or external solvers or even combine several solvers. In more complex problems, like those using multiple approaches, the objective is to come up with a very good solution (even if it is not mathematically optimal).

More Read

Internet Topology: Massive and Amazing Graphs
New White Paper: Decisions at the Heart of Your Processes
Music App Predicting the 2014 Top Artists with Big Data
First Look – FICO Model Central
The Future of Business Intelligence is collaborative

OPTMODEL is part of a group of SAS/OR procedures that also includes procedures targeted at solving specific classes of optimization problems with the SAS/OR solvers.  PROC OPTLP solves linear programs, PROC OPTMILP solves mixed-integer linear programs, and PROC OPTQP solves quadratic programs.  Each receives the specification of the optimization model via a SAS data set. General nonlinear optimization, requiring functional specification of the model elements, is provided by PROC OPTMODEL alone.

The second area of focus is SAS Simulation Studio for discrete event simulation. Simulation problems often deal with large interrelated systems.  It may not be possible to come up with a precise model of the outcomes (throughputs or other performance metrics) and their relationship to inputs (controls on system configuration or external operating conditions). Rather than making simplifying assumptions (that will be broken in almost every real-world case) and building a formal model, you can use the simulation approach to run different configurations or scenarios. The simulation engine acts as a stand-in for the unknowable input-outcome functions. This is a graphical Java environment that has a series of building blocks (like an entity generator, for example) that are then linked together to build the simulation model.

Simulation is coordinated with the JMP data discovery tools:

  • For understanding input data to the model (analyzing the data from a historical period so that you are not limited to playing back historical data but can extend it appropriately)
  • For designing experiments (which simulations will you need to get the coverage you need)
  • To review data output from the simulation.

The third piece is project and resource scheduling. This uses a critical path schedule for a project to start with and then generates resource constrained schedules for your various scenarios. It supports earned value reporting and drilling down into the details of the activity and resource schedule as well as giving you early views into what it is going to take to finish on-time, on-budget etc. based on current progress.

There’s also some additional capability around Bill of Materials processing for monitoring the usage of component parts and activities as well as some decision analysis tools for handling sequences of decisions where there can be uncertainty in outcomes.

Overall SAS/OR customers are still largely “traditional” OR people but they are seeing more companies that are moving up the learning curve (rules, data mining, predictive analytics, trading off multiple predictions and thus to optimization). Simulation also attracts more “novices” than optimization. They also see an increasing amount of operationalization of optimization into production environments. One advantage they feel they have is that their optimization is just another SAS procedure so it fits with a company’s existing SAS environment. It is part of the SAS foundation so any organization comfortable with deploying SAS components or using them in production is not going to see anything different with SAS/OR components.

Finally it should be noted that many of the SAS/OR capabilities are embedded in other SAS applications at the threaded kernel level – solvers embedded in applications, routines embedded in Enterprise Miner for scoring and network analysis, Forecast Server uses some optimization and so on.

Copyright © 2011 http://jtonedm.com James Taylor

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

The Case Against Triage

5 Min Read

Decision Management and the 4Ds

3 Min Read

Black Swan Alert: Low Tech Links Devastate High Tech Supply Chains

4 Min Read

Predictive Analytics, Present and Future: Interview with Dr. Eric Siegel

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?