Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Evaluating Successful Predictive Analytics Solutions
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Evaluating Successful Predictive Analytics Solutions
AnalyticsModelingPredictive Analytics

Evaluating Successful Predictive Analytics Solutions

RichardBoire
RichardBoire
3 Min Read
SHARE

Numerous studies exist regarding the use of many different kinds of mathematical techniques.  From an academic standpoint, the arguments supporting the merits of using one technique over the other contribute to increasing the knowledge base of its practitioners. Yet, practitioners will apply these techniques on  practical examples with a view to how it actually impacts the business.  This means that model evaluation does not solely reside on  pure statistical measures.

Numerous studies exist regarding the use of many different kinds of mathematical techniques.  From an academic standpoint, the arguments supporting the merits of using one technique over the other contribute to increasing the knowledge base of its practitioners. Yet, practitioners will apply these techniques on  practical examples with a view to how it actually impacts the business.  This means that model evaluation does not solely reside on  pure statistical measures. Instead, the practitioner’s key report in assessing model performance is the gains tables or decile charts.

The key benchmark in this report is how well the model rank orders the desired behavior of the predictive analytics solution.  There are two approaches to conducting this evaluation. The first approach is creating a Lorenz curve which plots the actual or observed behaviour of the solution against the deciles. These deciles or groups are determined by the predictive analytics solutions with decile 1 representing the highest scored names and decile 10 representing the lowest scored names.

 The second approach is to create a curve where the cumulative % of the desired behaviour is plotted against each decile where deciles again are created in the same manner as explained above. If the model is completely ineffective, the result would be a straight line upward while if the model is performing well, the line becomes a parabola. The model’s effectiveness  is determined by the difference in area between the parabola and the straight line which can actually be measured by what is referred to as the KS statistic.      

More Read

Dreamforce 2016 – Post One
Why Sentiment Analysis Engines Need Customization
First Results from the Predictive Analytics in the Cloud Survey
Planview Improves Long-Range Planning Potential
CVM Combined with Analytics

 As practitioners, either one of these tools can be used to evaluate models and to determine appropriate courses of action in terms of model reuse or model rebuild. Evaluating predictive analytics solutions in this manner also allows us to create further business metrics such as  ROI  which all businesses can easily understand.   

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data-driven facts blogging SmartDataCollective.com
Web Analytics

Data-Driven Facts for Better Blogging

5 Min Read

In Defense of Data Mining Ethics

5 Min Read

Why We Need to Deal with Big Data in R

3 Min Read
Image
AnalyticsBest PracticesBusiness IntelligenceBusiness RulesCloud ComputingData WarehousingDecision ManagementKnowledge Management

3 Secrets of a Successful Business Intelligence Strategy

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?