Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Decision Management in the New York Times
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Decision Management > Decision Management in the New York Times
Decision Management

Decision Management in the New York Times

JamesTaylor
JamesTaylor
3 Min Read
SHARE

There was an interesting article in the New York Times this weekend called Smarter than you think focused on e-discovery and the use of computers rather than hordes of lawyers. Two things strike me as interesting about this article.

There was an interesting article in the New York Times this weekend called Smarter than you think focused on e-discovery and the use of computers rather than hordes of lawyers. Two things strike me as interesting about this article.

The first is that it is a classic example of the power of beginning with the power in mind. E-Discovery of this kind might, almost certainly will, involve text analytics as discussed in the article. But it might also involve network analysis (to see how is connected to whom to find fraud rings or collaborators for instance), predictive analytics to see how likely it is that something is true about a transaction or company, and rules defined by experts (in this case lawyers) or by the boundaries of the case. Beginning with the decision in mind will ensure that the right mix of things are applied rather than simply asserting “this is e-discovery therefore we will use text analytics” which runs a risk that data in a database or other approaches will be overlooked.

More Read

Self-Service Business Intelligence is Catching On — And Paying Off
Technology and the Effective Marketer
Game Changers
Solving Smith’s Dashboard Disdain: Reimagine BI communication with Collaborative BI
Decision Management Systems Don’t Get Decision Fatigue

The other is that, while the focus of the article was on the reduction in staff needed, it fails to account for the massive growth in documents and data available in these cases. Without new tools, e-discovery could have been headed for what I call the “telephone operator event horizon” – the point at which e-discovery employed everyone because of the massive expansion in documents being processed (this is named after the famous prediction that expansion in telephone service would mean that half the population had to become a telephone operator – a prediction overtaken by the automated telephone exchange). Automation of previously expert decisions often shows this pattern:

  • Experts make decisions
  • The volume of these decisions being required begins to expand forcing a consideration of approaches to reducing the cost of the decision
  • The data needed for the decision is increasingly available in electronic form
  • This automation succeeds and in turn triggers an event larger increase in demand for the kind of decision being automated

Yes automation of decisions sometimes reduces the need for staff. Much more often it innovates and allows companies to apply the same staff to more problems by replacing boring, mechanical work with more interesting, more difficult work that is hard to automate or where automation is not desirable.

Copyright © 2011 http://jtonedm.com James Taylor

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Information Cascades, Revisited

6 Min Read

Big Data and Decision Management Systems: The Impact of Variety

3 Min Read

Predictive Analytics Spotlight from IBM

5 Min Read

Decision Management and Insurance – Rethink Legacy and Fast Path New Product Development

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?