Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Dealing with Disruptive Data: Advancing BI Connectors and Integrating SQL and NoSQL Databases
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Dealing with Disruptive Data: Advancing BI Connectors and Integrating SQL and NoSQL Databases
Big DataBusiness IntelligenceUnstructured Data

Dealing with Disruptive Data: Advancing BI Connectors and Integrating SQL and NoSQL Databases

SAsInSumit
SAsInSumit
6 Min Read
SHARE

Don’t count on databases to have uniform data models. Far from it, you’ll find different databases storing data in a plethora of shapes and sizes. This leads to a number of challenges when it comes time for business intelligence (BI) professionals to pull useful data from non-uniform database structures. The developers building applications versus those building intelligence have vastly different preferences in how to access data.

Don’t count on databases to have uniform data models. Far from it, you’ll find different databases storing data in a plethora of shapes and sizes. This leads to a number of challenges when it comes time for business intelligence (BI) professionals to pull useful data from non-uniform database structures. The developers building applications versus those building intelligence have vastly different preferences in how to access data.

Being able to manage data in whatever form is the heart of a modern challenge that companies of all sizes can expect to face, if they haven’t already. Enterprises need to have the BI tools that can access a full range of databases from structured to unstructured data models. This is especially true when applications become mission critical within the organization and the choice of technologies is often dictated by enterprise BI requirements for the executive leadership.

More Read

The Use and Abuse of Big Data
New Data Mining Book Out
Differentiating Through Event-Driven Analytics
Long Term Financial Planning with Financial Data Analytics
Big Data For Preventative Care In The Healthcare Field

For example, BI connectors and enhanced query languages have been developed for MongoDB and Cassandra to help address this. This query capability is layered on top of these NoSQL databases to build standard-based connectivity, processing non-tabular and unusually-shaped data and drawing valuable intelligence from it. BI connectors for NoSQL are hugely advantageous when dealing with different database systems, enabling BI professionals to retrieve data across diverse environments, but there is still room for improvement – especially around integrating data from NoSQL databases.

While SQL databases are relatively more established data storage systems, alternative NoSQL databases have recently been increasing in their popularity thanks to their scalability and flexible data models. MongoDB is currently the most widely downloaded NoSQL database, but it’s not alone. Among the other well-engineered NoSQL databases worth noting are Cassandra, MarkLogic and Couchbase. These feature sophisticated data intelligence interfaces: Couchbase supports the N1QL data access layer, a solution to the problem of accessing and processing JSON data, while MarkLogic supports XQuery, a very powerful and composable layer; Cassandra offers CQL, which is similar to SQL in that data is organized in tables containing rows of columns and supports prepared statements that allow developers to parse a query once and execute it multiple times with different concrete values.

With this trend, there arises a central need to improve NoSQL query languages and BI connectors across all NoSQL databases. The bottom line is that SQL and NoSQL databases both function to store data, while their divergent approaches make each suitable for different types of projects.

NoSQL has been getting more advanced support for query languages, and there has been a correlated increase in NoSQL technologies. Some vendors, like Progress Software, are building vendor-agnostic BI connectors that provide the ability to work reliably across all NoSQL technologies. And here’s the beauty behind it: In putting logical schema on top of unstructured and semi-structured databases, BI connectors act as a data source for SQL based platforms while actually being an open source NoSQL database.

These BI connectors provide normalized SQL access for NoSQL data models to certain collections for compatibility with existing BI applications, and their flexible data models handle data that lacks uniformity from row to row, storing data in JSON-like documents that are able to meet the latest demands for modern application development. The NoSQL database BI connectors provide compatibility with BI ecosystems that are expecting SQL, structuring with deeply nested data that does not have equivalents in the relational models. Before the concept of normalization for NoSQL databases, select third party vendors were building unreliable BI connectors that flattened the data model.

The industry demands better, and so is heading toward improving queries and complex analytics through standards based SQL connectivity in complex data environments. And in these cases, NoSQL BI connectors are used with different tools to achieve more elegant analytics. This includes data visualization (pulling data out of the connector, then running the visualization and using predictive analytics tools layered on to garner sophisticated data) and data federation (technologies such as Microsoft SQL Server Linked Server that allows NoSQL standards to look like SQL server databases).

These disruptive data sources indicate that BI is getting more complex. However, in a world of non-uniform data, BI connectors that layer on new databases to establish much-needed standard connections enable valuable enterprise data to be pulled from varying database structures. New BI tools keep advancing the state of the industry, making unstructured and semi-structured data seem much less threatening when it comes to integrating SQL and NoSQL databases.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Data Warehousing

Big Intelligence: BI Meets Big Data, with Apache Drill

6 Min Read
data analytics in email marketing
Big Data

10 Essential Data-Driven B2B Email Marketing Strategies

8 Min Read
Image
Data Quality

Open Data Grey Areas

0 Min Read

Social Media Roundup for August 26th, 2011

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?