Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Dazed and Confused About Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Dazed and Confused About Big Data
Big Data

Dazed and Confused About Big Data

JulieHunt
JulieHunt
5 Min Read
SHARE

Not every business needs to initiate “big data” analytics, but every company needs to understand more about big data – even if the final decision is that big data doesn’t yet have a role for the business objectives of a particular company. Big data sources can reveal vital information for every aspect of the business. But first, organizations have to gain a better understanding of what “big data” is and why it might matter for business insight.

Not every business needs to initiate “big data” analytics, but every company needs to understand more about big data – even if the final decision is that big data doesn’t yet have a role for the business objectives of a particular company. Big data sources can reveal vital information for every aspect of the business. But first, organizations have to gain a better understanding of what “big data” is and why it might matter for business insight.

Research firm Gartner has introduced 12 dimensions to clarify the many aspects of the confusing world of big data. Instead of “big data”, Gartner opts for Extreme Information Management, to reflect the diversity of data formats that can be considered “big data”. The various dimensions underscore the reality that “big data” isn’t just one thing and isn’t just ‘lots of data’. Approaching big data through different dimensions can help companies understand whether or not big data holds any value for their business needs, and where their most valuable big data may reside.

        

I like the term Extreme Information Management, where Extreme maps to the massive and highly disparate data stores and data classes that defy and overwhelm conventional data management techniques; Information points to intelligence and insight; and Management reminds us that hard work must be done to achieve real results. Big data analytics are only useful if they benefit desired business outcomes, open doors to new possibilities, alert businesses to risks and opportunities, and so on.

Big data accumulates from many sources – a scan through the different categories of data helps an organization identify data sources that matter to the business:

  • Multi-structured or unstructured data with highly variable formats and semantics – examples are social media content, log files, and e-mail. Multi-structured data comes with many difficulties – information can be mined, but for it to have meaning and value, sentiment and context must be derived as well and correlated with master data for customers, products, and so on.
  • The fastest growing area of big data is machine-generated data – examples are medical devices, industry sensors, automated machinery and systems, and GPS locations. Current and newly minted enterprises are very interested in this kind of data.
  • Big data can be big too – datasets that are scaling from hundreds of terabytes up to petabytes (and more). Often organizations need this data processed very quickly to achieve analytics in real time or right time situations.

More understanding of what can be accomplished from big data analytics is revealed by real world business cases:

  • Evolution of Smart Cities: Cities need to ensure the sustainability of resources and services, while making city services responsive to more people. Big data analytics interface with interconnected devices, technologies and digital systems to improve operations and efficiencies.
  • Continuous Operational Optimization: People use operational data for planning, improving and expanding business capabilities. Automated systems utilize machine-generated data to self-optimize based on continuous automated analytics.
  • Fighting Cyber Threats: Sophisticated cyber criminals don’t ever stop their attacks on organizations. Proactive security processes utilizing big data analytics must be put in place to continuously seek out active and potential threats. 

Eventually each organization must decide if big data analytics are a worthwhile – even game-changing – investment. Much thought and exploration should go into such a significant decision.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Big DataSocial DataWeb Analytics

The Type of Data Marketers Need from IT

5 Min Read

Big Data, Automation, Mobility: Keys to Growing Your Small Business

6 Min Read

Enterprise Risk Management and EPM – Separate or Joined at the Hip?

8 Min Read

Tips for Utilizing Customer Experience Data.

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?