Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Visualization Doesn’t Need to be Biased
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > R Programming Language > Data Visualization Doesn’t Need to be Biased
R Programming Language

Data Visualization Doesn’t Need to be Biased

DavidMSmith
DavidMSmith
4 Min Read
SHARE

At the FlowingData blog, data visualization commentator and Visualize This author Nathan Yau lists 5 misconceptions about visualization:

At the FlowingData blog, data visualization commentator and Visualize This author Nathan Yau lists 5 misconceptions about visualization:

  • Software does everything (Nathan notes “Personally, I use a lot of R and have a lot of fun in Illustrator”, but uses a lot of other tools as well.)
  • Visualization is for making data flashy
  • The more information in a single graphic, the better
  • It has to be exact
  • Visualization is too biased to be useful

I agree completely with Nathan’s comments on the last point above:

More Read

How to Access 100M Time Series in R in Under 60 Seconds
The R-Files: Jeff Ryan
The Great Debate: SAS vs. R
Course: Financial Data Modeling and Analysis in R
Data Mining Book Review: Data Mining with R

There’s a certain amount of subjectivity that goes into any visualization as you choose what data to show and how to show it. By focusing on one part of the data, you might inadvertently obscure another. However, if you’re careful, get to know the data that you’re dealing with, and stay true to what’s there, then it should be easier to overcome bias.

After all, statistics is somewhat subjective, too. You choose what you analyze, what methods to use, and pick what to point out in reports.

News organizations, for example, have to do this all the time. They get a dataset, decide what story they want to tell (or find what story the data has to tell). Browse through graphics by The New York Times, and you can see how you can add a layer of information that objectively describes what the data is about.

This stands in contrast to the presentation I saw today at the Strata conference from Alex Lundry, Chart Wars: The Political Power of Data Visualization. (You can see a shorter version of his talk online). It was an entertaining talk, but his main point was to encourage data visualization partitioners to actively insert a point of view into the presentation of data. For example, he encourages more charts like the one on the right below, rather than the one on the left.

Usefuljunk-costs Usefuljunk-monster
(Images from Nigel Holmes’ paper, Useful Junk? The Effects of Visual Embellishment on Comprehension and Memorability of Charts.)

Lundry’s take is that because the image on the right is more easily recalled by those who have seen it, it’s naturally better. I disagree. My objection to the chart on the right isn’t just that uses chartjunk, nor that the teeth are disporoportionately sized to the values, nor even that the X “axis” is slanted upwards to exaggerate the rise. My objection is the chart on the right is that it actively pushes an analysis upon the viewer. As Nathan notes, there’s always an element of bias in what data is selected to be presented, and the way it’s presented. But good charts merely present data, and leave the analysis (obvious though it may be) to the viewer. When a chart takes on the burden of analysis for the viewer, that’s when it strays from data visualization into propaganda.

FlowingData: 5 misconceptions about visualization 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How to Make 3-D Graphics from SAS Data

1 Min Read

R User Groups Update

3 Min Read

A bit of fun with R

2 Min Read
Image
HadoopR Programming LanguageSoftware

10 Amazing Data Analytics Platforms Everyone Should Know About

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?