Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
    data analytics for trademark registration
    Optimizing Trademark Registration with Data Analytics
    6 Min Read
    data analytics for finding zip codes
    Unlocking Zip Code Insights with Data Analytics
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: EMC Survey Differentiates BI and Data Science
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > EMC Survey Differentiates BI and Data Science
Business IntelligenceR Programming Language

EMC Survey Differentiates BI and Data Science

DavidMSmith
DavidMSmith
5 Min Read
SHARE

EMC last week published the results of a survey of 462 IT decision makers who self-identified as either a data scientist or business intelligence professional (plus 35 invitees who were attendees at the EMC Data Scientist Summity and/or Kaggle competitors).

EMC last week published the results of a survey of 462 IT decision makers who self-identified as either a data scientist or business intelligence professional (plus 35 invitees who were attendees at the EMC Data Scientist Summity and/or Kaggle competitors). There’s a nice summary of the conclusions at the EMC blog, (where data scientists are described as “The New Rock Star”) and you can also find writeups at eWeek and ITBusinessEdge. Here are a few of my takeaways from the report and how they pertain to the R language:

The world needs more data scientists, stat*! According to the survey, 65% of data science professionals believe demand for data science talent will outpace the supply over the next 5 years. What’s more, most think that new data scientists will be found from graduating classes. R is the de-facto standard for statistics teaching at universities (and with many academic institutions no longer able afford SAS or SPSS licensing, more are adopting free statistical software for teaching and research), and with more than 2 million users worldwide may of these new data scientists will be already be trained in R. In our experience with Revolution Analytics customers, this is a key factor in the growing adoption of R in corporations.

There will be more data — and more drive to analyze it. Data from mobile sensors, social media, surveillance, medical imaging — combined with traditional customer and transactional data — has created an explosion in the opportunity to generate value and insights from the data. But according to the survey, only 1/3 of companies are able to effectively use new data to assist their in decision-making process. This is exactly where the R language shines — to give data scientist the freedom to explore and combine diverse data sets and come up with novel ways to make all this data — data companies are making big investments to collect and store — finally pay its way. And since there’s so much data, being able to apply big-data analytics with the R language makes Revolution R Enterprise a fundamental tool in this process.

Data Science and Business Intelligence aren’t the same thing. One of the most interesting aspects of the survey for me was how it highlighted the differences between data science and business intelligence, given that the survey participants identified themselves as one or the other. This is especially revealed in the choices of data analysis tools by BI professionals (dark blue) and data scientists (light blue) in the chart below taken from the EMC report:

Data science - BI tools

That 20% of data scientists use R but only 5% of self-described business intelligence professional do so isn’t much of a surprise, and illustrates the key difference between BI and Data Science. (BTW, I’m surprised Excel wasn’t an option for Data Analysis as well as Data Management — I’d expect to see similar levels of usage amongst BI professional for that use case.)  While data science is about exploring and learning from data, BI is a process with limited flexibility to answer a fairly narrow range of questions. But as businesses start reaping the benefits of data scientists to extract answers to more complex questions from big data, there’s no doubt that there will be a need to get these models, predictions, and visualizations in the hands of a BI audience that wouldn’t normally use a tool like R. That’s why being able to integrate R into BI frameworks and other end-user applications is so important.

* Pun very much intended.

EMC Press Release: New Global Study: Only One-Third of Companies Making Effective Use of Data


Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

accountant using ai
AI Improves Integrity in Corporate Accounting
Exclusive
ai and law enforcement
Forensic AI Technology is Doing Wonders for Law Enforcement
Artificial Intelligence Exclusive
langgraph and genai
LangGraph Orchestrator Agents: Streamlining AI Workflow Automation
Artificial Intelligence Exclusive
ai fitness app
Will AI Replace Personal Trainers? A Data-Driven Look at the Future of Fitness Careers
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

business intelligence for digital marketing
Business IntelligenceMarket ResearchMarketing

Boost Your Digital Marketing with Business Intelligence

10 Min Read

How to Implement BPM in Your Organization

7 Min Read

No Shortcuts: Read the BI/DW Instructions and Ask for Directions

4 Min Read
big data
AnalyticsBig DataBusiness IntelligenceDecision ManagementStatisticsUnstructured DataWorkforce Data

Analytics at Google: Great Example of Data-Driven Decision-Making

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?